cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A167847 Straight-line primes.

Original entry on oeis.org

11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 4567, 76543, 23456789, 1111111111111111111, 11111111111111111111111
Offset: 1

Views

Author

Omar E. Pol, Nov 14 2009

Keywords

Comments

Prime numbers with 2 digits together with the primes whose digits are in arithmetic progression. The structure of digits represents a straight line.
Note that in the graphic representation the points are connected by imaginary line segments (see also A135643).
Note that all two-digit primes are straight-line primes but this sequence has no three-digit terms.
No further terms between 23456789 and 115507867=prime(6600000). - R. J. Mathar, Dec 04 2009
All terms after 23456789 are repunit primes (A004022) with number of digits: 19, 23, 317, 1031, 49081, 86453, 109297, 270343, ... (A004023). - Jens Kruse Andersen, Jul 21 2014

Examples

			The number 4567 is straight-line prime:
  . . . .
  . . . .
  . . . 7
  . . 6 .
  . 5 . .
  4 . . .
  . . . .
  . . . .
  . . . .
  . . . .
		

Crossrefs

Extensions

2 more terms from R. J. Mathar, Dec 04 2009
a(25)-a(26) from Jens Kruse Andersen, Jul 21 2014

A134999 Triangle-shaped numbers.

Original entry on oeis.org

100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 148, 149, 150, 151
Offset: 1

Views

Author

Omar E. Pol, Dec 05 2007

Keywords

Comments

The structure of digits represents a triangle. Three digits are the vertex. In the graphic representation the points are connected by imaginary line segments. All 3-digit numbers are terms of this sequence, except for the straight-line numbers A135643. For 4 or more digits the terms are 1000, 1011, 1012, 1024, 1034, 1036, ...

Examples

			The triangle number 1024:
  . . . 4
  . . . .
  . . 2 .
  1 . . .
  . 0 . .
		

Crossrefs

Not to be confused with the triangular numbers, A000217!

A247616 Numbers with more than two distinct digits in arithmetic progression.

Original entry on oeis.org

123, 135, 147, 159, 210, 234, 246, 258, 321, 345, 357, 369, 420, 432, 456, 468, 531, 543, 567, 579, 630, 642, 654, 678, 741, 753, 765, 789, 840, 852, 864, 876, 951, 963, 975, 987, 1234, 1357, 2345, 2468, 3210, 3456, 3579, 4321, 4567, 5432, 5678, 6420, 6543
Offset: 1

Views

Author

Reinhard Zumkeller, Sep 21 2014

Keywords

Comments

A135643 without repdigit numbers (cf. A010785);
finite sequence with last and largest term a(96) = 9876543210.

Examples

			a(40) = 2468 with constant digit differences = +2;
a(41) = 3210 with constant digit differences = -1;
a(42) = 3456 with constant digit differences = +1.
		

Crossrefs

Subsequence of A135643.

Programs

  • Haskell
    a247616 n = a247616_list !! (n-1)
    a247616_list = filter f [100 .. 9876543210] where
       f x = head vs /= 0 && all (== 0) ws where
             ws = zipWith (-) (tail vs) vs
             vs = zipWith (-) (tail us) us
             us = map (read . return) $ show x

A301516 Numbers n with decimal expansion (d_1, ..., d_k) such that the convex hull of the set of points { (i, d_i), i = 1..k } has positive area.

Original entry on oeis.org

100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 148, 149, 150, 151, 152, 153, 154, 155
Offset: 1

Views

Author

Rémy Sigrist, Dec 16 2018

Keywords

Comments

This sequence is the complement of the straight-line numbers (0..99 alongside A135643).
This sequence first differs from A134999 at n = 857: a(857) = 1001 whereas A134999(857) = 1011.

Crossrefs

Programs

  • PARI
    is(n, base=10) = my (d=digits(n, base)); for (i=1, #d-2, if (d[i]+d[i+2]-2*d[i+1], return (1))); return (0)
    
  • Python
    def ok(n):
        d = list(map(int, str(n)))
        return any(d[i]+d[i+2]-2*d[i+1] != 0 for i in range(len(d)-2))
    print([k for k in range(1002) if ok(k)]) # Michael S. Branicky, Aug 03 2022 after Rémy Sigrist

A231701 Numbers > 100 with decimal digits in arithmetic progression mod 10.

Original entry on oeis.org

109, 111, 123, 135, 147, 159, 161, 173, 185, 197, 208, 210, 222, 234, 246, 258, 260, 272, 284, 296, 307, 319, 321, 333, 345, 357, 369, 371, 383, 395, 406, 418, 420, 432, 444, 456, 468, 470, 482, 494, 505, 517, 529, 531, 543, 555, 567, 579, 581, 593, 604, 616
Offset: 1

Views

Author

Paul Tek, Nov 12 2013

Keywords

Comments

This sequence contains straight-line numbers > 99 (A135643).
Each set of numbers from 10^n to 10^(n+1) contains 90 of these numbers. - T. D. Noe, Nov 12 2013
The sequence mod 100 has period 900, the sequence mod 90 has period 8100. - Paul Tek, Nov 14 2013

Examples

			(8,2,6,0,4,...) is an arithmetic progression mod 10, hence the number 82604 appears in this sequence.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[100, 10^3], Length[Union[Mod[Differences[IntegerDigits[#]], 10]]] <= 1 &] (* T. D. Noe, Nov 12 2013 *)
  • PARI
    a(n) = my(len=3+(n-1)\90,   \
                     fs=10+((n-1)%90), \
                     f=fs\10,          \
                     s=fs%10);         \
                   return(sum(i=1,len,10^(len-i)*((f+(i-1)*(s-f))%10)))
    
  • Python
    from itertools import count, islice
    def agen(): yield from (int("".join(str((s0+i*r)%10) for i in range(d))) for d in count(3) for s0 in range(1, 10) for r in range(-s0, 10-s0))
    print(list(islice(agen(), 52))) # Michael S. Branicky, Aug 05 2022

A135999 Numbers that are both triangular numbers A000217 and triangle-shaped numbers A134999.

Original entry on oeis.org

105, 120, 136, 153, 171, 190, 231, 253, 276, 300, 325, 351, 378, 406, 435, 465, 496, 528, 561, 595, 703, 780, 820, 861, 903, 946, 990, 1596, 1711, 2145, 2346, 3240, 3321, 3486, 3570, 3741, 4371, 4560, 4753, 5565
Offset: 1

Views

Author

Omar E. Pol, Dec 10 2007

Keywords

Comments

The number 496 appears to be the unique perfect number A000396 of this sequence. The interesting numbers 120 and 153 are supertriangular numbers.

Examples

			The numbers 120 as a triangle-shaped number A134999:
. 2 .
1 . .
. . 0
The number 120 as a triangular number A000217:
. . . . . . . O
. . . . . . .O O
. . . . . . O O O
. . . . . .O O O O
. . . . . O O O O O
. . . . .O O O O O O
. . . . O O O O O O O
. . . .O O O O O O O O
. . . O O O O O O O O O
. . .O O O O O O O O O O
. . O O O O O O O O O O O
. .O O O O O O O O O O O O
. O O O O O O O O O O O O O
.O O O O O O O O O O O O O O
O O O O O O O O O O O O O O O <--- A000217(15)=120.
		

Crossrefs

Previous Showing 11-16 of 16 results.