cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A157978 Primes p such that 4*p - 3 is also a prime.

Original entry on oeis.org

2, 5, 11, 19, 23, 29, 59, 61, 71, 79, 89, 101, 103, 109, 113, 131, 149, 151, 191, 193, 233, 239, 263, 283, 313, 331, 353, 359, 373, 389, 401, 431, 439, 479, 499, 521, 523, 541, 569, 571, 599, 619, 631, 653, 659, 673, 683, 701, 709, 739, 743, 751, 761, 773, 829
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [n: n in [0..2000] | IsPrime(n) and IsPrime(4*n - 3)]; // Vincenzo Librandi, Feb 03 2014
  • Mathematica
    q=3;lst={};Do[p=Prime[n];If[PrimeQ[(q+1)*p-q],AppendTo[lst,p]],{n,6!}];lst
    Select[Prime[Range[1000]],PrimeQ[4 # - 3]&] (* Vincenzo Librandi, Feb 03 2014 *)

A157976 Primes p such that 18*p + 17 is also prime.

Original entry on oeis.org

2, 3, 5, 13, 19, 23, 37, 47, 53, 67, 79, 83, 89, 103, 109, 149, 157, 167, 193, 229, 233, 257, 263, 277, 313, 347, 349, 383, 389, 419, 439, 457, 467, 487, 499, 523, 563, 569, 593, 599, 619, 677, 719, 727, 769, 773, 823, 829, 857, 863, 877, 937, 1013, 1039, 1049
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [n: n in [0..1100] | IsPrime(n) and IsPrime(18*n + 17)]; // Vincenzo Librandi, Feb 03 2014
  • Mathematica
    q=17;lst={};Do[p=Prime[n];If[PrimeQ[(q+1)*p+q],AppendTo[lst,p]],{n,6!}];lst
    Select[Prime[Range[1000]], PrimeQ[18 # + 17]&] (* Vincenzo Librandi, Feb 03 2014 *)

A157977 Primes p such that 20*p + 19 is also prime.

Original entry on oeis.org

2, 3, 11, 17, 23, 29, 41, 71, 101, 149, 167, 233, 239, 251, 263, 269, 281, 293, 317, 347, 353, 401, 449, 461, 491, 503, 557, 563, 569, 647, 683, 743, 797, 857, 941, 947, 953, 977, 1019, 1031, 1091, 1103, 1151, 1163, 1193, 1217, 1283, 1289, 1319, 1361, 1373
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [n: n in [0..2000] | IsPrime(n) and IsPrime(20*n + 19)]; // Vincenzo Librandi, Feb 03 2014
  • Mathematica
    q=19;lst={};Do[p=Prime[n];If[PrimeQ[(q+1)*p+q],AppendTo[lst,p]],{n,6!}];lst
    Select[Prime[Range[250]],PrimeQ[20#+19]&] (* Harvey P. Dale, Jul 04 2011 *)
Previous Showing 11-13 of 13 results.