cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A106015 Primes p such that 4*p +- 3 are primes.

Original entry on oeis.org

2, 5, 11, 19, 59, 89, 109, 149, 151, 331, 359, 389, 401, 439, 499, 521, 571, 599, 829, 941, 1019, 1039, 1129, 1249, 1279, 1319, 1381, 1451, 1669, 1741, 1871, 2131, 2161, 2179, 2251, 2459, 2819, 3119, 3251, 3469, 3539, 3581, 3659, 3911, 4001, 4231, 4261
Offset: 1

Views

Author

Zak Seidov, May 05 2005

Keywords

Programs

  • Magma
    [p: p in PrimesUpTo(100000)| IsPrime(4*p-3) and IsPrime(4*p+3)]; // Vincenzo Librandi, Nov 13 2010
  • Mathematica
    Select[Prime[Range[400]], PrimeQ[4#+3]&&PrimeQ[4#-3]&]
    Select[Prime[Range[600]],AllTrue[4#+{3,-3},PrimeQ]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Feb 18 2021 *)

Formula

A023213 INTERSECT A157978. - R. J. Mathar, Jul 25 2009

A163182 Primes p such that neither 4p+3 nor 4p-3 are prime.

Original entry on oeis.org

3, 13, 43, 53, 73, 83, 97, 127, 137, 139, 163, 167, 173, 197, 199, 211, 223, 251, 269, 277, 281, 293, 311, 317, 337, 347, 379, 383, 397, 409, 419, 421, 433, 443, 449, 463, 491, 503, 547, 557, 563, 593, 601, 607, 613, 617, 641, 643, 727, 733, 757, 787, 809
Offset: 1

Views

Author

Keywords

Comments

Primes neither in A023213 nor in A157978.

Examples

			For p=3, 4*3+3=15 (not prime) and 4*3-3=9 (not prime), so the prime p=3 is in the sequence.
For p=7, 4*7+3=31 (prime), so the prime p=7 is not in the sequence.
		

Crossrefs

Programs

  • Mathematica
    lst={};Do[p=Prime[n];If[ !PrimeQ[2*p+(p-1)+(p-2)]&&!PrimeQ[2*p+(p+1)+(p+2)], AppendTo[lst,p]],{n,3*5!}];lst
    Select[Prime[Range[150]],NoneTrue[4#+{3,-3},PrimeQ]&] (* Harvey P. Dale, Aug 01 2022 *)
  • PARI
    isok(p) = isprime(p) && !isprime(4*p+3) && !isprime(4*p-3); \\ Michel Marcus, Oct 12 2018

Extensions

Edited by R. J. Mathar, Jul 25 2009, Jul 27 2009

A306616 Integers k such that phi(Catalan(k+1)) = 4*phi(Catalan(k)) where phi is A000010 and Catalan is A000108.

Original entry on oeis.org

2, 8, 19, 20, 36, 42, 44, 55, 56, 76, 91, 109, 116, 120, 140, 143, 152, 156, 176, 184, 200, 204, 213, 216, 224, 235, 242, 260, 289, 296, 300, 380, 384, 400, 401, 415, 436, 464, 469, 476, 524, 547, 553, 564, 595, 602, 616, 624, 630, 631, 660, 685, 704, 716, 744, 776, 800
Offset: 1

Views

Author

Michel Marcus, Mar 01 2019

Keywords

Comments

Integers k such that A062624(k+1) = 4*A062624(k).
Consists of integers k (see p. 1405 of Luca link):
k = 2p-2, where p >= 5 is a prime such that q = 4p-3 is also prime (see A157978);
k = 3p-2, where p > 5 is a prime such that q = 2p-1 is also prime (see A005382).

Examples

			phi(C(2)) = phi(2) = 1 and phi(C(3)) = phi(5) = 4 so 2 is a term.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[1000], EulerPhi[CatalanNumber[#+1]]== 4*EulerPhi[CatalanNumber[#]] &] (* G. C. Greubel, Mar 02 2019 *)
  • PARI
    C(n) = binomial(2*n,n)/(n+1);
    isok(n) = eulerphi(C(n+1)) == 4*eulerphi(C(n));
    
  • Sage
    [n for n in (1..1000) if euler_phi(catalan_number(n+1)) == 4*euler_phi(catalan_number(n))] # G. C. Greubel, Mar 02 2019
Showing 1-3 of 3 results.