A264871
Array read by antidiagonals: T(n,m) = (1+2^n)^m; n,m>=0.
Original entry on oeis.org
1, 2, 1, 4, 3, 1, 8, 9, 5, 1, 16, 27, 25, 9, 1, 32, 81, 125, 81, 17, 1, 64, 243, 625, 729, 289, 33, 1, 128, 729, 3125, 6561, 4913, 1089, 65, 1, 256, 2187, 15625, 59049, 83521, 35937, 4225, 129, 1, 512, 6561, 78125, 531441, 1419857, 1185921, 274625, 16641, 257
Offset: 0
1, 2, 4, 8, 16, 32,
1, 3, 9, 27, 81, 243,
1, 5, 25, 125, 625, 3125,
1, 9, 81, 729, 6561, 59049,
1, 17, 289, 4913, 83521, 1419857,
1, 33, 1089, 35937, 1185921,39135393,
-
Reverse /@ Table[(1 + 2^(n - m))^m, {n, 0, 9}, {m, 0, n}] // Flatten (* Michael De Vlieger, Nov 27 2015 *)
A326011
a(n) = (n+1) * (2^n + 1)^n.
Original entry on oeis.org
1, 6, 75, 2916, 417605, 234812358, 527932234375, 4755738419928072, 171280331996409907209, 24606864966197875457438730, 14080929986159936046600341796875, 32073236633246852578917758577924120588, 290760173774986242601808360162358149769707533, 10492680499171055486742235424276666079725581443186702, 1507792223578968167717594884445653164343553232898773193359375
Offset: 0
O.g.f.: A(x) = 1 + 6*x + 75*x^2 + 2916*x^3 + 417605*x^4 + 234812358*x^5 + 527932234375*x^6 + 4755738419928072*x^7 + ... + (n+1)*(2^n + 1)^n*x^n + ...
such that
A(x) = 1/(1 - x)^2 + 2*2*x/(1 - 2*x)^3 + 3*2^4*x^2/(1 - 2^2*x)^4 + 4*2^9*x^3/(1 - 2^3*x)^5 + 5*2^16*x^4/(1 - 2^4*x)^6 + 6*2^25*x^5/(1 - 2^5*x)^7 + 7*2^36*x^6/(1 - 2^6*x)^8 + ... + (n+1)*2^(n^2)*x^n/(1 - 2^n*x)^(n+2) + ...
-
Table[(n+1)(2^n+1)^n,{n,0,20}] (* Harvey P. Dale, Mar 22 2020 *)
-
{a(n) = (n+1) * (2^n + 1)^n}
for(n=0,15, print1(a(n),", "))
-
/* O.g.f. */
{a(n) = my(A = sum(m=0,n, (m+1) * 2^(m^2) * x^m / (1 - 2^m*x +x*O(x^n))^(m+2) )); polcoeff(A,n)}
for(n=0,15, print1(a(n),", "))
-
/* E.g.f. */
{a(n) = my(A = sum(m=0,n, (m+1 + 2^m*x) * 2^(m^2) * exp(2^m*x +x*O(x^n)) * x^m/m! )); n!*polcoeff(A,n)}
for(n=0,15, print1(a(n),", "))
A326012
a(n) = (n+1)*(n+2)/2 * (2^n + 1)^n.
Original entry on oeis.org
1, 9, 150, 7290, 1252815, 821843253, 2111728937500, 21400822889676324, 856401659982049536045, 135337757314088315015913015, 84485579916959616279602050781250, 208476038116104541762965430756506783822, 2035321216424903698212658521136507048387952731, 78695103743782916150566765682074995597941860823900265, 12062337788631745341740759075565225314748425863190185546875000
Offset: 0
O.g.f.: A(x) = 1 + 9*x + 150*x^2 + 7290*x^3 + 1252815*x^4 + 821843253*x^5 + 2111728937500*x^6 + 21400822889676324*x^7 + 856401659982049536045*x^8 + ... + (n+1)*(n+2)/2 * (2^n + 1)^n*x^n + ...
such that
A(x) = 1/(1 - x)^3 + 3*2*x/(1 - 2*x)^4 + 6*2^4*x^2/(1 - 2^2*x)^5 + 10*2^9*x^3/(1 - 2^3*x)^6 + 15*2^16*x^4/(1 - 2^4*x)^7 + 21*2^25*x^5/(1 - 2^5*x)^8 + 28*2^36*x^6/(1 - 2^6*x)^9 + ... + (n+1)*(n+2)/2 * 2^(n^2)*x^n/(1 - 2^n*x)^(n+3) + ...
-
Table[((n+1)(n+2))/2 (2^n+1)^n,{n,0,20}] (* Harvey P. Dale, Jun 02 2025 *)
-
{a(n) = (n+1)*(n+2)/2 * (2^n + 1)^n}
for(n=0,15, print1(a(n),", "))
-
/* O.g.f. */
{a(n) = my(A = sum(m=0,n, (m+1)*(m+2)/2 * 2^(m^2) * x^m / (1 - 2^m*x +x*O(x^n))^(m+3) )); polcoeff(A,n)}
for(n=0,15, print1(a(n),", "))
-
/* E.g.f. */
{a(n) = my(A = sum(m=0,n, ((m+1 + 2^m*x)*(m+2 + 2^m*x) + 2^m*x)/2 * 2^(m^2) * exp(2^m*x +x*O(x^n)) * x^m/m! )); n!*polcoeff(A,n)}
for(n=0,15, print1(a(n),", "))
A337851
a(n) = (2^n + 2)^n.
Original entry on oeis.org
1, 4, 36, 1000, 104976, 45435424, 82653950016, 627485170000000, 19631688197463081216, 2504194578379511247798784, 1292628144912333835229805413376, 2687153475176994340820312500000000000, 22431765115399782718874449007331506546282496
Offset: 0
O.g.f.: A(x) = 1 + 4*x + 36*x^2 + 1000*x^3 + 104976*x^4 + 45435424*x^5 + 82653950016*x^6 + 627485170000000*x^7 + 19631688197463081216*x^8 + ...
where
A(x) = 1/(1 - 2*x) + 2*x/(1 - 2^2*x)^2 + 2^4*x^2/(1 - 2^3*x)^3 + 2^9*x^3/(1 - 2^4*x)^4 + 2^16*x^4/(1 - 2^5*x)^5 + 2^25*x^5/(1 - 2^6*x)^6 + ...
-
{a(n,q,m,b) = (m*q^n + b)^n}
for(n=0,15, print1(a(n,q=2,m=1,b=2),", "))
-
/* E.g.f. formula: */
{a(n,q,m,b) = polcoeff( sum(k=0,n, m^k * q^(k^2) * x^k / (1 - b*q^k*x +x*O(x^n))^(k+1)), n)}
for(n=0,15, print1(a(n,q=2,m=1,b=2),", "))
-
/* E.g.f. formula: */
{a(n,q,m,b) = n! * polcoeff( sum(k=0,n, m^k * q^(k^2) * exp(b*q^k*x +x*O(x^n)) * x^k/k!), n)}
for(n=0,15, print1(a(n,q=2,m=1,b=2),", "))
A386644
E.g.f. A(x) satisfies A(x) = Sum_{n>=0} (A(x)^n + x)^n * x^n / n!.
Original entry on oeis.org
1, 1, 5, 34, 437, 7996, 191497, 5679178, 200959929, 8269303384, 388201586381, 20486491855534, 1201171090068325, 77504136748838164, 5460029344935045441, 417185040885539939506, 34377042102420367770353, 3040184386700809821194416, 287334696971272926921192469, 28915390444625255004763736278
Offset: 0
E.g.f.: A(x) = 1 + x + 5*x^2/2! + 34*x^3/3! + 437*x^4/4! + 7996*x^5/5! + 191497*x^6/6! + 5679178*x^7/7! + 200959929*x^8/8! + 8269303384*x^9/9! + ...
where
A(x) = 1 + (A(x) + x)*x + (A(x)^2 + x)^2*x^2/2! + (A(x)^3 + x)^3*x^3/3! + (A(x)^4 + x)^4*x^2/4! + (A(x)^5 + x)^5*x^5/5! + ...
Also,
A(x) = exp(x^2) + A(x)*exp(x^2*A(x))*x + A(x)^4*exp(x^2*A(x)^2)*x^2/2! + A(x)^9*exp(x^2*A(x)^3)*x^3/3! + A(x)^16*exp(x^2*A(x)^4)*x^4/4! + ...
-
{a(n) = my(A=[1]); for(i=1, n, A=concat(A, 0); A[#A] = polcoeff( sum(m=0, #A, (Ser(A)^m + x)^m * x^m/m! ), #A-1) ); H=A; n!*A[n+1]}
for(n=0, 20, print1(a(n), ", "))
A337852
a(n) = (2^(n+1) + 1)^n.
Original entry on oeis.org
1, 5, 81, 4913, 1185921, 1160290625, 4608273662721, 74051159531521793, 4796659837465472798721, 1248862969947666168212890625, 1304426412609681656861792686592001, 5459157240288132828933147334116110282753, 91477746675481294892349178081259839233191936001
Offset: 0
O.g.f.: A(x) = 1 + 5*x + 81*x^2 + 4913*x^3 + 1185921*x^4 + 1160290625*x^5 + 4608273662721*x^6 + 74051159531521793*x^7 + 4796659837465472798721*x^8 + ...
where
A(x) = 1/(1 - x) + 2^2*x/(1 - 2*x)^2 + 2^6*x^2/(1 - 2^2*x)^3 + 2^12*x^3/(1 - 2^3*x)^4 + 2^20*x^4/(1 - 2^4*x)^5 + 2^30*x^5/(1 - 2^5*x)^6 + ...
-
{a(n,q,m,b) = (m*q^n + b)^n}
for(n=0,15, print1(a(n,q=2,m=2,b=1),", "))
-
/* E.g.f. formula: */
{a(n,q,m,b) = polcoeff( sum(k=0,n, m^k * q^(k^2) * x^k / (1 - b*q^k*x +x*O(x^n))^(k+1)), n)}
for(n=0,15, print1(a(n,q=2,m=2,b=1),", "))
-
/* E.g.f. formula: */
{a(n,q,m,b) = n! * polcoeff( sum(k=0,n, m^k * q^(k^2) * exp(b*q^k*x +x*O(x^n)) * x^k/k!), n)}
for(n=0,15, print1(a(n,q=2,m=2,b=1),", "))
A386646
Expansion of e.g.f. Sum_{n>=0} (2^n + x)^n * x^n / n!.
Original entry on oeis.org
1, 2, 18, 536, 66316, 33636832, 68750980216, 562995064353920, 18446990378410477200, 2417856827427983647531520, 1267651025241922183470966470176, 2658456127743272591813667810372278272, 22300745369876426654206395965130496991176384, 748288839162767087393170357241926671150780067340288
Offset: 0
E.g.f.: A(x) = 1 + 2*x + 18*x^2/2! + 536*x^3/3! + 66316*x^4/4! + 33636832*x^5/5! + 68750980216*x^6/6! + 562995064353920*x^7/7! + 18446990378410477200*x^8/8! + ...
where
A(x) = 1 + (2 + x)*x + (2^2 + x)^2*x^2/2! + (2^3 + x)^3*x^3/n! + (2^4 + x)^4*x^4/4! + (2^5 + x)^5*x^5/5! + ...
Also,
A(x) = exp(x^2) + 2*exp(2*x^2)*x + 2^4*exp(2^2*x^2)*x^2/2! + 2^9*exp(2^3*x^2)*x^3/3! + 2^16*exp(2^4*x^2)*x^4/4! + ...
-
nmax = 15; CoefficientList[Series[Sum[(2^k + x)^k * x^k / k!, {k, 0, nmax}], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Aug 09 2025 *)
-
{a(n) = my(A = sum(m=0, n, (2^m + x)^m * x^m/m! +x*O(x^n)) ); n!*polcoef(A,n)}
for(n=0, 15, print1(a(n), ", "))
A356274
a(n) is the number whose base-(n+1) expansion equals the binary expansion of n.
Original entry on oeis.org
1, 3, 5, 25, 37, 56, 73, 729, 1001, 1342, 1741, 2366, 2941, 3615, 4369, 83521, 104977, 130340, 160021, 194922, 234741, 280393, 332377, 406250, 474553, 551151, 636637, 732511, 837901, 954304, 1082401, 39135393, 45435425, 52521910, 60466213, 69345326, 79236613
Offset: 1
n=4 in binary is 100 and interpreting those digits as base n+1 = 5 is a(4) = 25.
-
a[n_] := FromDigits[IntegerDigits[n, 2], n + 1]; Array[a, 40] (* Amiram Eldar, Aug 19 2022 *)
-
a(n) = fromdigits(digits(n, 2), n+1)
-
def a(n): return sum((n+1)**i*int(bi) for i, bi in enumerate(bin(n)[2:][::-1]))
print([a(n) for n in range(1, 39)]) # Michael S. Branicky, Aug 02 2022
Comments