cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A264871 Array read by antidiagonals: T(n,m) = (1+2^n)^m; n,m>=0.

Original entry on oeis.org

1, 2, 1, 4, 3, 1, 8, 9, 5, 1, 16, 27, 25, 9, 1, 32, 81, 125, 81, 17, 1, 64, 243, 625, 729, 289, 33, 1, 128, 729, 3125, 6561, 4913, 1089, 65, 1, 256, 2187, 15625, 59049, 83521, 35937, 4225, 129, 1, 512, 6561, 78125, 531441, 1419857, 1185921, 274625, 16641, 257
Offset: 0

Views

Author

R. J. Mathar, Nov 27 2015

Keywords

Examples

			       1,       2,       4,       8,      16,      32,
       1,       3,       9,      27,      81,     243,
       1,       5,      25,     125,     625,    3125,
       1,       9,      81,     729,    6561,   59049,
       1,      17,     289,    4913,   83521, 1419857,
       1,      33,    1089,   35937, 1185921,39135393,
		

Crossrefs

Cf. A000079 (row 0), A000244 (row 1), A000351 (row 2), A001019 (row 3), A001026 (row 4), A009977 (row 5), A000051 (column 1), A028400 (column 2), A136516 (main diagonal), A165327 (upper subdiagonal).

Programs

  • Mathematica
    Reverse /@ Table[(1 + 2^(n - m))^m, {n, 0, 9}, {m, 0, n}] // Flatten (* Michael De Vlieger, Nov 27 2015 *)

Formula

G.f. for row n: 1/(1-(1+2^n)*x). - R. J. Mathar, Dec 15 2015

A326011 a(n) = (n+1) * (2^n + 1)^n.

Original entry on oeis.org

1, 6, 75, 2916, 417605, 234812358, 527932234375, 4755738419928072, 171280331996409907209, 24606864966197875457438730, 14080929986159936046600341796875, 32073236633246852578917758577924120588, 290760173774986242601808360162358149769707533, 10492680499171055486742235424276666079725581443186702, 1507792223578968167717594884445653164343553232898773193359375
Offset: 0

Views

Author

Paul D. Hanna, Jun 05 2019

Keywords

Comments

More generally, the following sums are equal:
(1) Sum_{n>=0} binomial(n+k-1, n) * y^n * (F + G^n)^n,
(2) Sum_{n>=0} binomial(n+k-1, n) * y^n * G^(n^2) / (1 - y*F*G^n)^(n+k),
for any fixed integer k; here, k = 2 and y = x, F = 1, G = 2.

Examples

			O.g.f.: A(x) = 1 + 6*x + 75*x^2 + 2916*x^3 + 417605*x^4 + 234812358*x^5 + 527932234375*x^6 + 4755738419928072*x^7 + ... + (n+1)*(2^n + 1)^n*x^n + ...
such that
A(x) = 1/(1 - x)^2 + 2*2*x/(1 - 2*x)^3 + 3*2^4*x^2/(1 - 2^2*x)^4 + 4*2^9*x^3/(1 - 2^3*x)^5 + 5*2^16*x^4/(1 - 2^4*x)^6 + 6*2^25*x^5/(1 - 2^5*x)^7 + 7*2^36*x^6/(1 - 2^6*x)^8 + ... + (n+1)*2^(n^2)*x^n/(1 - 2^n*x)^(n+2) + ...
		

Crossrefs

Programs

  • Mathematica
    Table[(n+1)(2^n+1)^n,{n,0,20}] (* Harvey P. Dale, Mar 22 2020 *)
  • PARI
    {a(n) = (n+1) * (2^n + 1)^n}
    for(n=0,15, print1(a(n),", "))
    
  • PARI
    /* O.g.f. */
    {a(n) = my(A = sum(m=0,n, (m+1) * 2^(m^2) * x^m / (1 - 2^m*x +x*O(x^n))^(m+2) )); polcoeff(A,n)}
    for(n=0,15, print1(a(n),", "))
    
  • PARI
    /* E.g.f. */
    {a(n) = my(A = sum(m=0,n, (m+1 + 2^m*x) * 2^(m^2) * exp(2^m*x +x*O(x^n)) * x^m/m! )); n!*polcoeff(A,n)}
    for(n=0,15, print1(a(n),", "))

Formula

O.g.f.: Sum_{n>=0} (n+1) * (2^n + 1)^n * x^n.
O.g.f.: Sum_{n>=0} (n+1) * 2^(n^2) * x^n / (1 - 2^n*x)^(n+2).
E.g.f.: sum_{n>=0} (n+1 + 2^n*x) * 2^(n^2) * exp(2^n*x) * x^n/n!.

A326012 a(n) = (n+1)*(n+2)/2 * (2^n + 1)^n.

Original entry on oeis.org

1, 9, 150, 7290, 1252815, 821843253, 2111728937500, 21400822889676324, 856401659982049536045, 135337757314088315015913015, 84485579916959616279602050781250, 208476038116104541762965430756506783822, 2035321216424903698212658521136507048387952731, 78695103743782916150566765682074995597941860823900265, 12062337788631745341740759075565225314748425863190185546875000
Offset: 0

Views

Author

Paul D. Hanna, Jun 05 2019

Keywords

Comments

More generally, the following sums are equal:
(1) Sum_{n>=0} binomial(n+k-1, n) * r^n * (p + q^n)^n,
(2) Sum_{n>=0} binomial(n+k-1, n) * r^n * q^(n^2) / (1 - p*q^n*r)^(n+k),
for any fixed integer k; here, k = 3 and p = 1, q = 2, r = x.

Examples

			O.g.f.: A(x) = 1 + 9*x + 150*x^2 + 7290*x^3 + 1252815*x^4 + 821843253*x^5 + 2111728937500*x^6 + 21400822889676324*x^7 + 856401659982049536045*x^8 + ... + (n+1)*(n+2)/2 * (2^n + 1)^n*x^n + ...
such that
A(x) = 1/(1 - x)^3 + 3*2*x/(1 - 2*x)^4 + 6*2^4*x^2/(1 - 2^2*x)^5 + 10*2^9*x^3/(1 - 2^3*x)^6 + 15*2^16*x^4/(1 - 2^4*x)^7 + 21*2^25*x^5/(1 - 2^5*x)^8 + 28*2^36*x^6/(1 - 2^6*x)^9 + ... + (n+1)*(n+2)/2 * 2^(n^2)*x^n/(1 - 2^n*x)^(n+3) + ...
		

Crossrefs

Programs

  • Mathematica
    Table[((n+1)(n+2))/2 (2^n+1)^n,{n,0,20}] (* Harvey P. Dale, Jun 02 2025 *)
  • PARI
    {a(n) = (n+1)*(n+2)/2 * (2^n + 1)^n}
    for(n=0,15, print1(a(n),", "))
    
  • PARI
    /* O.g.f. */
    {a(n) = my(A = sum(m=0,n, (m+1)*(m+2)/2 * 2^(m^2) * x^m / (1 - 2^m*x +x*O(x^n))^(m+3) )); polcoeff(A,n)}
    for(n=0,15, print1(a(n),", "))
    
  • PARI
    /* E.g.f. */
    {a(n) = my(A = sum(m=0,n, ((m+1 + 2^m*x)*(m+2 + 2^m*x) + 2^m*x)/2 * 2^(m^2) * exp(2^m*x +x*O(x^n)) * x^m/m! )); n!*polcoeff(A,n)}
    for(n=0,15, print1(a(n),", "))

Formula

O.g.f.: Sum_{n>=0} (n+1)*(n+2)/2 * (2^n + 1)^n * x^n.
O.g.f.: Sum_{n>=0} (n+1)*(n+2)/2 * 2^(n^2) * x^n / (1 - 2^n*x)^(n+3).
E.g.f.: sum_{n>=0} ((n+1 + 2^n*x)*(n+2 + 2^n*x) + 2^n*x)/2 * 2^(n^2) * exp(2^n*x) * x^n/n!.

A337851 a(n) = (2^n + 2)^n.

Original entry on oeis.org

1, 4, 36, 1000, 104976, 45435424, 82653950016, 627485170000000, 19631688197463081216, 2504194578379511247798784, 1292628144912333835229805413376, 2687153475176994340820312500000000000, 22431765115399782718874449007331506546282496
Offset: 0

Views

Author

Paul D. Hanna, Sep 26 2020

Keywords

Comments

In general, we have the o.g.f. identity:
Sum_{n>=0} m^n * q^(n^2) * x^n/(1 - b*q^n*x)^(n+1) = Sum_{n>=0} (m*q^n + b)^n * x^n ; here, q=2, m=1, b=2.
In general, we have the e.g.f. identity:
Sum_{n>=0} m^n * q^(n^2) * exp(b*q^n*x) * x^n / n! = Sum_{n>=0} (m*q^n + b)^n * x^n / n! ; here, q=2, m=1, b=2.

Examples

			O.g.f.: A(x) = 1 + 4*x + 36*x^2 + 1000*x^3 + 104976*x^4 + 45435424*x^5 + 82653950016*x^6 + 627485170000000*x^7 + 19631688197463081216*x^8 + ...
where
A(x) = 1/(1 - 2*x) + 2*x/(1 - 2^2*x)^2 + 2^4*x^2/(1 - 2^3*x)^3 + 2^9*x^3/(1 - 2^4*x)^4 + 2^16*x^4/(1 - 2^5*x)^5 + 2^25*x^5/(1 - 2^6*x)^6 + ...
		

Crossrefs

Programs

  • PARI
    {a(n,q,m,b) = (m*q^n + b)^n}
    for(n=0,15, print1(a(n,q=2,m=1,b=2),", "))
    
  • PARI
    /* E.g.f. formula: */
    {a(n,q,m,b) = polcoeff( sum(k=0,n, m^k * q^(k^2) * x^k / (1 - b*q^k*x +x*O(x^n))^(k+1)), n)}
    for(n=0,15, print1(a(n,q=2,m=1,b=2),", "))
    
  • PARI
    /* E.g.f. formula: */
    {a(n,q,m,b) = n! * polcoeff( sum(k=0,n, m^k * q^(k^2) * exp(b*q^k*x +x*O(x^n)) * x^k/k!), n)}
    for(n=0,15, print1(a(n,q=2,m=1,b=2),", "))

Formula

O.g.f.: Sum_{n>=0} 2^(n^2) * x^n/(1 - 2^(n+1)*x)^(n+1) = Sum_{n>=0} (2^n + 2)^n * x^n.
E.g.f.: Sum_{n>=0} 2^(n^2) * exp(2^(n+1)*x) * x^n / n! = Sum_{n>=0} (2^n + 2)^n * x^n / n!.
a(n) = 2^n * A165327(n) for n >= 0.

A386644 E.g.f. A(x) satisfies A(x) = Sum_{n>=0} (A(x)^n + x)^n * x^n / n!.

Original entry on oeis.org

1, 1, 5, 34, 437, 7996, 191497, 5679178, 200959929, 8269303384, 388201586381, 20486491855534, 1201171090068325, 77504136748838164, 5460029344935045441, 417185040885539939506, 34377042102420367770353, 3040184386700809821194416, 287334696971272926921192469, 28915390444625255004763736278
Offset: 0

Views

Author

Paul D. Hanna, Aug 08 2025

Keywords

Comments

It appears that for n > 6, a(n) (mod 6) equals [1, 4, 3, 4, 5, 4] repeating.
In general, the following sums are equal:
(C.1) Sum_{n>=0} (q^n + p)^n * r^n/n!,
(C.2) Sum_{n>=0} q^(n^2) * exp(p*q^n*r) * r^n/n!;
here, q = A(x) with p = x, r = x.

Examples

			E.g.f.: A(x) = 1 + x + 5*x^2/2! + 34*x^3/3! + 437*x^4/4! + 7996*x^5/5! + 191497*x^6/6! + 5679178*x^7/7! + 200959929*x^8/8! + 8269303384*x^9/9! + ...
where
A(x) = 1 + (A(x) + x)*x + (A(x)^2 + x)^2*x^2/2! + (A(x)^3 + x)^3*x^3/3! + (A(x)^4 + x)^4*x^2/4! + (A(x)^5 + x)^5*x^5/5! + ...
Also,
A(x) = exp(x^2) + A(x)*exp(x^2*A(x))*x + A(x)^4*exp(x^2*A(x)^2)*x^2/2! + A(x)^9*exp(x^2*A(x)^3)*x^3/3! + A(x)^16*exp(x^2*A(x)^4)*x^4/4! + ...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[1]); for(i=1, n, A=concat(A, 0); A[#A] = polcoeff( sum(m=0, #A, (Ser(A)^m + x)^m * x^m/m! ), #A-1) ); H=A; n!*A[n+1]}
    for(n=0, 20, print1(a(n), ", "))

Formula

E.g.f. A(x) = Sum_{n>=0} a(n)*x^n/n! satisfies the following formulas.
(1) A(x) = Sum_{n>=0} (A(x)^n + x)^n * x^n / n!.
(2) A(x) = Sum_{n>=0} A(x)^(n^2) * exp(x^2*A(x)^n) * x^n / n!.

A337852 a(n) = (2^(n+1) + 1)^n.

Original entry on oeis.org

1, 5, 81, 4913, 1185921, 1160290625, 4608273662721, 74051159531521793, 4796659837465472798721, 1248862969947666168212890625, 1304426412609681656861792686592001, 5459157240288132828933147334116110282753, 91477746675481294892349178081259839233191936001
Offset: 0

Views

Author

Paul D. Hanna, Sep 26 2020

Keywords

Comments

In general, we have the o.g.f. identity:
Sum_{n>=0} m^n * q^(n^2) * x^n/(1 - b*q^n*x)^(n+1) = Sum_{n>=0} (m*q^n + b)^n * x^n ; here, q=2, m=2, b=1.
In general, we have the e.g.f. identity:
Sum_{n>=0} m^n * q^(n^2) * exp(b*q^n*x) * x^n / n! = Sum_{n>=0} (m*q^n + b)^n * x^n / n! ; here, q=2, m=2, b=1.

Examples

			O.g.f.: A(x) = 1 + 5*x + 81*x^2 + 4913*x^3 + 1185921*x^4 + 1160290625*x^5 + 4608273662721*x^6 + 74051159531521793*x^7 + 4796659837465472798721*x^8 + ...
where
A(x) = 1/(1 - x) + 2^2*x/(1 - 2*x)^2 + 2^6*x^2/(1 - 2^2*x)^3 + 2^12*x^3/(1 - 2^3*x)^4 + 2^20*x^4/(1 - 2^4*x)^5 + 2^30*x^5/(1 - 2^5*x)^6 + ...
		

Crossrefs

Programs

  • PARI
    {a(n,q,m,b) = (m*q^n + b)^n}
    for(n=0,15, print1(a(n,q=2,m=2,b=1),", "))
    
  • PARI
    /* E.g.f. formula: */
    {a(n,q,m,b) = polcoeff( sum(k=0,n, m^k * q^(k^2) * x^k / (1 - b*q^k*x +x*O(x^n))^(k+1)), n)}
    for(n=0,15, print1(a(n,q=2,m=2,b=1),", "))
    
  • PARI
    /* E.g.f. formula: */
    {a(n,q,m,b) = n! * polcoeff( sum(k=0,n, m^k * q^(k^2) * exp(b*q^k*x +x*O(x^n)) * x^k/k!), n)}
    for(n=0,15, print1(a(n,q=2,m=2,b=1),", "))

Formula

O.g.f.: Sum_{n>=0} 2^(n*(n+1)) * x^n/(1 - 2^n*x)^(n+1) = Sum_{n>=0} (2^(n+1) + 1)^n * x^n.
E.g.f.: Sum_{n>=0} 2^(n*(n+1)) * exp(2^n*x) * x^n / n! = Sum_{n>=0} (2^(n+1) + 1)^n * x^n / n!.

A386646 Expansion of e.g.f. Sum_{n>=0} (2^n + x)^n * x^n / n!.

Original entry on oeis.org

1, 2, 18, 536, 66316, 33636832, 68750980216, 562995064353920, 18446990378410477200, 2417856827427983647531520, 1267651025241922183470966470176, 2658456127743272591813667810372278272, 22300745369876426654206395965130496991176384, 748288839162767087393170357241926671150780067340288
Offset: 0

Views

Author

Paul D. Hanna, Aug 08 2025

Keywords

Comments

In general, the following sums are equal:
(C.1) Sum_{n>=0} (q^n + p)^n * r^n/n!,
(C.2) Sum_{n>=0} q^(n^2) * exp(p*q^n*r) * r^n/n!;
here, q = A(x) with p = x, r = x.

Examples

			E.g.f.: A(x) = 1 + 2*x + 18*x^2/2! + 536*x^3/3! + 66316*x^4/4! + 33636832*x^5/5! + 68750980216*x^6/6! + 562995064353920*x^7/7! + 18446990378410477200*x^8/8! + ...
where
A(x) = 1 + (2 + x)*x + (2^2 + x)^2*x^2/2! + (2^3 + x)^3*x^3/n! + (2^4 + x)^4*x^4/4! + (2^5 + x)^5*x^5/5! + ...
Also,
A(x) = exp(x^2) + 2*exp(2*x^2)*x + 2^4*exp(2^2*x^2)*x^2/2! + 2^9*exp(2^3*x^2)*x^3/3! + 2^16*exp(2^4*x^2)*x^4/4! + ...
		

Crossrefs

Cf. A136516.

Programs

  • Mathematica
    nmax = 15; CoefficientList[Series[Sum[(2^k + x)^k * x^k / k!, {k, 0, nmax}], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Aug 09 2025 *)
  • PARI
    {a(n) = my(A = sum(m=0, n, (2^m + x)^m * x^m/m! +x*O(x^n)) ); n!*polcoef(A,n)}
    for(n=0, 15, print1(a(n), ", "))

Formula

E.g.f. A(x) = Sum_{n>=0} a(n)*x^n/n! satisfies the following formulas.
(1) A(x) = Sum_{n>=0} (2^n + x)^n * x^n / n!.
(2) A(x) = Sum_{n>=0} 2^(n^2) * exp(2^n*x^2) * x^n / n!.
a(n) ~ 2^(n^2). - Vaclav Kotesovec, Aug 09 2025

A356274 a(n) is the number whose base-(n+1) expansion equals the binary expansion of n.

Original entry on oeis.org

1, 3, 5, 25, 37, 56, 73, 729, 1001, 1342, 1741, 2366, 2941, 3615, 4369, 83521, 104977, 130340, 160021, 194922, 234741, 280393, 332377, 406250, 474553, 551151, 636637, 732511, 837901, 954304, 1082401, 39135393, 45435425, 52521910, 60466213, 69345326, 79236613
Offset: 1

Views

Author

Thomas Scheuerle, Aug 02 2022

Keywords

Comments

If the binary expansion of n is n = bit0*2^0 + bit1*2^1 + bit2*2^2 + ... then a(n) = bit0*(n+1)^0 + bit1*(n+1)^1 + bit2*(n+1)^2 + ... . In other words: Interpret the binary expansion of n as digits in base n+1.

Examples

			n=4 in binary is 100 and interpreting those digits as base n+1 = 5 is a(4) = 25.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := FromDigits[IntegerDigits[n, 2], n + 1]; Array[a, 40] (* Amiram Eldar, Aug 19 2022 *)
  • PARI
    a(n) = fromdigits(digits(n, 2), n+1)
    
  • Python
    def a(n): return sum((n+1)**i*int(bi) for i, bi in enumerate(bin(n)[2:][::-1]))
    print([a(n) for n in range(1, 39)]) # Michael S. Branicky, Aug 02 2022

Formula

a(2^n) = (2^n + 1)^n = A136516(n).
a(2^n - 1) = (2^(n^2) - 1)/(2^n - 1) = A128889(n).
a(2^n + 1) = 1 + (2^n + 2)^n.
a(n) = A104257(n+1, n).
a(n) = (1/n)*Sum_{j>=1} floor((n + 2^(j-1))/2^j) * ((n-1)*(n+1)^(j-1) + 1).
a(n) = (1/n)*Sum_{j=1..n} ((n-1)*(n+1)^A007814(j) + 1).
a(2*n) = A104258(2*n+1) - 1.
(2*m+1)^n divides a((2*m+1)^n-1) for positive m and n > 0.
Previous Showing 11-18 of 18 results.