cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-49 of 49 results.

A139201 Numbers k such that (k!-6)/6 is prime.

Original entry on oeis.org

4, 5, 7, 8, 11, 14, 16, 17, 18, 20, 43, 50, 55, 59, 171, 461, 859, 2830, 3818, 5421, 5593, 10118, 10880, 24350
Offset: 1

Views

Author

Artur Jasinski, Apr 11 2008

Keywords

Comments

a(25) > 25000. - Robert Price, Dec 15 2016

Crossrefs

Programs

  • Maple
    a:=proc(n) if isprime((1/6)*factorial(n)-1)=true then n else end if end proc: seq(a(n),n=4..500); # Emeric Deutsch, Apr 29 2008
  • Mathematica
    a = {}; Do[If[PrimeQ[(n! - 6)/6], Print[a]; AppendTo[a, n]], {n, 1, 300}]; a (* Artur Jasinski *)

Extensions

2 more terms from Emeric Deutsch, Apr 29 2008
More terms from Serge Batalov, Feb 18 2015
a(22)-a(24) from Robert Price, Dec 15 2016

A139202 Numbers k such that (k!-7)/7 is prime.

Original entry on oeis.org

7, 9, 20, 23, 46, 54, 57, 71, 85, 387, 396, 606, 1121, 2484, 6786, 9321, 11881, 18372
Offset: 1

Views

Author

Artur Jasinski, Apr 11 2008

Keywords

Comments

a(19) > 25000. - Robert Price, Nov 05 2016

Crossrefs

Programs

  • Mathematica
    a = {}; Do[If[PrimeQ[(n! - 7)/7], Print[a]; AppendTo[a, n]], {n, 1, 300}]; a (*Artur Jasinski*)

Extensions

More terms from Alexis Olson (AlexisOlson(AT)gmail.com), Nov 14 2008
a(13)-a(14) PRPs from Sean A. Irvine, Aug 05 2010
a(15)-a(18) PRP from Robert Price, Nov 05 2016

A139203 Numbers k such that (k!-8)/8 is prime.

Original entry on oeis.org

4, 6, 8, 10, 11, 16, 19, 47, 66, 183, 376, 507, 1081, 1204, 12111, 23181
Offset: 1

Views

Author

Artur Jasinski, Apr 11 2008

Keywords

Comments

a(17) > 25000. - Robert Price, Oct 08 2016

Crossrefs

Programs

  • Maple
    a:=proc(n) if isprime((1/8)*factorial(n)-1)=true then n else end if end proc: seq(a(n),n=4..550); # Emeric Deutsch, May 07 2008
  • Mathematica
    a = {}; Do[If[PrimeQ[(n! - 8)/8], Print[a]; AppendTo[a, n]], {n, 1, 300}]; a

Extensions

2 more terms from Emeric Deutsch, May 07 2008
More terms from Serge Batalov, Feb 18 2015
a(15)-a(16) from Robert Price, Oct 08 2016

A139204 Numbers k such that (k!-9)/9 is prime.

Original entry on oeis.org

6, 15, 17, 18, 21, 27, 29, 30, 37, 47, 50, 64, 125, 251, 602, 611, 1184, 1468, 5570, 10679, 15798, 21237
Offset: 1

Views

Author

Artur Jasinski, Apr 11 2008

Keywords

Comments

a(20) > 10000. The PFGW program has been used to certify all the terms up to a(19), using a deterministic test which exploits the factorization of a(n) + 1. - Giovanni Resta, Mar 28 2014
a(23) > 25000. - Robert Price, Mar 29 2017

Crossrefs

Programs

  • Mathematica
    a = {}; Do[If[PrimeQ[(n! - 9)/9], Print[a]; AppendTo[a, n]], {n, 1, 300}]; a
  • PARI
    for(n=1,1000,if(floor(n!/9-1)==n!/9-1,if(ispseudoprime(n!/9-1),print(n)))) \\ Derek Orr, Mar 28 2014

Extensions

a(14)-a(16) from Derek Orr, Mar 28 2014
a(17)-a(19) from Giovanni Resta, Mar 28 2014
a(20)-a(22) from Robert Price, Mar 29 2017

A139164 a(n) = (prime(n)!+6)/6.

Original entry on oeis.org

2, 21, 841, 6652801, 1037836801, 59281238016001, 20274183401472001, 4308669456480829440001, 1473626998956616992423936000001, 1370473109029653802954260480000001
Offset: 2

Views

Author

Artur Jasinski, Apr 11 2008

Keywords

Crossrefs

Programs

  • Mathematica
    Table[(Prime[n]! + 6)/6, {n, 2, 30}]

Extensions

Offset corrected by Georg Fischer, Apr 04 2022

A139165 a(n)=(prime(n)!+7)/7.

Original entry on oeis.org

721, 5702401, 889574401, 50812489728001, 17377871486976001, 3693145248412139520001, 1263108856248528850649088000001, 1174691236311131831103651840000001
Offset: 4

Views

Author

Artur Jasinski, Apr 11 2008

Keywords

Crossrefs

Programs

  • Mathematica
    Table[(Prime[n]! + 7)/7, {n, 4, 30}]

A139073 Smallest prime number of the form (n+k!)/n.

Original entry on oeis.org

2, 2, 3, 7, 1009, 2, 5702401, 631, 4481, 13, 566092801, 3, 23452949585516450807808000001, 259201, 337, 2521, 3553839003727872684550301886383176323956736000000001, 41
Offset: 1

Views

Author

Artur Jasinski, Apr 07 2008

Keywords

Crossrefs

Programs

  • Mathematica
    a = {}; Do[ k = 1; While[ ! PrimeQ[ (k! + n)/n ], k++ ]; AppendTo[ a, (k! + n)/n ], {n, 1, 100} ]; a [Corrected May 06 2008]
  • PARI
    a(n)=my(k,t);until(denominator(t=k++!/n+1)==1&&ispseudoprime(t),);t \\ Charles R Greathouse IV, Jul 19 2011

Formula

a(n) = (n + A139072(n)!)/n. - Amiram Eldar, Oct 14 2024

A139091 a(n) = largest prime divisor of the number prime(n)!/9 + 1.

Original entry on oeis.org

17, 827, 22319071, 1718296754087, 35662591735219, 477262171871, 1609727002420791262479701, 146215297537890243023, 2020914387433686758547638152441, 1073774770807266077323
Offset: 4

Views

Author

Artur Jasinski, Apr 08 2008

Keywords

Crossrefs

Programs

  • Mathematica
    a = {}; Do[w = FactorInteger[(Prime[n]! + 9)/9]; AppendTo[a, Last[w][[1]]], {n, 4, 16}]; a

A139090 a(n) = smallest prime divisor of the number prime(n)!/9 + 1.

Original entry on oeis.org

3, 31, 31, 23, 379, 83, 610301, 293, 101, 47, 281, 127, 278174297, 2971, 109, 5090615254324820333, 46411, 106087, 269, 288931, 59047158151, 120871, 373, 19140822523, 56595118147, 1708207, 331, 38749, 157, 2927, 2143
Offset: 4

Views

Author

Artur Jasinski, Apr 08 2008

Keywords

Crossrefs

Programs

  • Mathematica
    a = {}; Do[w = FactorInteger[(Prime[n]! + 9)/9]; AppendTo[a, First[w][[1]]], {n, 4, 16}]; a
    Table[FactorInteger[p!/9+1][[1,1]],{p,Prime[Range[4,35]]}] (* Harvey P. Dale, Sep 19 2020 *)

Extensions

More terms from Jon E. Schoenfield, Jul 16 2010
Previous Showing 41-49 of 49 results.