cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A138535 Odd primes p_n for which A140140(n) < (p_n-1)/2, where p_n = n-th odd prime (A065091).

Original entry on oeis.org

13, 17, 31, 41, 61, 73, 89, 109, 113, 131, 151, 163, 193, 199, 211, 229, 233, 241, 281, 307, 313, 337, 379, 397, 401, 421, 461, 463, 521, 523, 541, 577, 593, 601, 613, 617, 631, 661, 673, 701, 727, 757, 761, 769, 811, 829, 859, 881, 883, 911, 937, 941, 953
Offset: 1

Views

Author

Vladimir Shevelev, May 10 2008

Keywords

Crossrefs

Extensions

Corrected and extended by Ray Chandler, May 19 2008

A138536 Odd primes p_n for which A140140(n)=(p_n-1)/2, where p_n = n-th odd prime (A065091).

Original entry on oeis.org

3, 5, 7, 11, 19, 23, 29, 37, 43, 47, 53, 59, 67, 71, 79, 83, 97, 101, 103, 107, 127, 137, 139, 149, 157, 167, 173, 179, 181, 191, 197, 223, 227, 239, 251, 257, 263, 269, 271, 277, 283, 293, 311, 317, 331, 347, 349, 353, 359, 367, 373, 383, 389, 409, 419, 431
Offset: 1

Views

Author

Vladimir Shevelev, May 10 2008

Keywords

Crossrefs

Extensions

Corrected and extended by Ray Chandler, May 19 2008

A141350 Overpseudoprimes to base 3.

Original entry on oeis.org

121, 703, 3281, 8401, 12403, 31621, 44287, 47197, 55969, 74593, 79003, 88573, 97567, 105163, 112141, 211411, 221761, 226801, 228073, 293401, 313447, 320167, 328021, 340033, 359341, 432821, 443713, 453259, 478297, 497503, 504913, 679057, 709873, 801139, 867043, 894781, 973241, 1042417
Offset: 1

Views

Author

Vladimir Shevelev, Jun 27 2008, corrected Sep 07 2008

Keywords

Comments

If h_3(n) is the multiplicative order of 3 modulo n, r_3(n) is the number of cyclotomic cosets of 3 modulo n then, by the definition, n is an overpseudoprime to base 3 if h_3(n)*r_3(n)+1=n. These numbers are in A020229.
In particular, if n is squarefree such that its prime factorization is n=p_1*...*p_k, then n is overpseudoprime of base 3 iff h_3(p_1)=...=h_3(p_k).

Crossrefs

Programs

  • Mathematica
    ops3Q[n_] := CompositeQ[n] && GCD[n, 3] == 1 && MultiplicativeOrder[3, n]*(DivisorSum[n, EulerPhi[#]/MultiplicativeOrder[3, #] &] - 1) + 1 == n; Select[Range[10^6], ops3Q] (* Amiram Eldar, Jun 24 2019 *)
  • PARI
    isok(n) = (n!=1) && !isprime(n) && (gcd(n,3)==1) && (znorder(Mod(3,n)) * (sumdiv(n, d, eulerphi(d)/znorder(Mod(3, d))) - 1) + 1 == n); \\ Michel Marcus, Oct 25 2018

Extensions

a(10)-a(38) from Gilberto Garcia-Pulgarin added by Vladimir Shevelev, Feb 06 2012

A122929 Multiplicative order of 2 mod A141232(n).

Original entry on oeis.org

11, 28, 36, 52, 48, 60, 52, 148, 76, 68, 51, 52, 29, 92, 156, 92, 29, 179, 166, 100, 44, 102, 239, 156, 50, 25, 51, 364, 224, 204, 244, 166, 66, 346, 194, 388, 618, 92, 388, 102, 660, 371, 388, 29, 772, 828, 239, 460, 55, 292, 431, 166, 882, 1060, 532, 155, 68
Offset: 1

Views

Author

Vladimir Shevelev, Jul 05 2008, Jul 12 2008, Jul 23 2008

Keywords

Crossrefs

Programs

  • PARI
    a137576(n)=my(t); sumdiv(2*n+1, d, eulerphi(d)/(t=znorder(Mod(2, d))))*t-t+1;
    lista(nn) = {forcomposite(n=1, nn, if ((n % 2) && (a137576((n-1)/2) == n), print1(znorder(Mod(2, n)), ", ");););} \\ Michel Marcus, Feb 09 2015

Extensions

More terms from Michel Marcus, Feb 09 2015

A140667 Odd composite numbers k for which k = A140607((k-1)/2).

Original entry on oeis.org

91, 1581, 2465, 8481, 25761, 31609, 33355, 34945, 118405, 146611, 319507, 736291, 994507, 3270403, 3375487, 5176153, 6186403, 6228685, 8650951, 10679131, 22028203, 26017291, 31470211, 33796531, 41710411, 42149971, 42474547, 46672291, 48316969, 49019851, 58986091, 68182003, 69885649
Offset: 1

Views

Author

Ray Chandler, May 20 2008

Keywords

Crossrefs

Programs

  • PARI
    f(n) = (eulerphi(2*n+1) + 1 + g(n))/2; \\ A140607
    g(n) = sumdiv(2*n+1, d, eulerphi(d)/(t=znorder(Mod(2, d))))*t-t+1; \\ A137576
    isok(c) = if (!isprime(c) && (c%2), f((c-1)/2) == c); \\ Michel Marcus, Jan 31 2023

Extensions

More terms from Michel Marcus, Jan 31 2023

A139791 Numbers n for which 2n is a multiple of A002326(n), the multiplicative order of 2 mod 2n+1.

Original entry on oeis.org

1, 2, 3, 5, 6, 8, 9, 11, 14, 15, 18, 20, 21, 23, 26, 29, 30, 33, 35, 36, 39, 41, 44, 48, 50, 51, 53, 54, 56, 63, 65, 68, 69, 74, 75, 78, 81, 83, 86, 89, 90, 95, 96, 98, 99, 105, 111, 113, 114, 116, 119, 120, 125, 128, 131, 134, 135, 138, 140, 141, 146, 153, 155, 156, 158, 165, 168, 170
Offset: 1

Views

Author

Vladimir Shevelev, May 21 2008, May 24 2008

Keywords

Comments

The sequence properly contains A005097. 170 is the first number which is not in A005097. One can prove that A002326(2^(2t-1)) = 4t. Thus if n=2^(2t-1), where, for any m>0, t=2^(m-1) then 2n is a multiple of A002326(n) while 2n+1 is a Fermat number which, as well known, is not always a prime.
The sequence is the union of A005097 and (A001567 - 1)/2. [Conjectured by Vladimir Shevelev, proved by Ray Chandler, May 26 2008]

References

  • Christopher Adler and Jean-Paul Allouche (2022), Finite self-similar sequences, permutation cycles, and music composition, Journal of Mathematics and the Arts, 16:3, 244-261, DOI: 10.1080/17513472.2022.2116745.

Crossrefs

Programs

  • Mathematica
    Select[Range[160], Divisible[2#, MultiplicativeOrder[2, 2#+1]] &] (* Amiram Eldar, Jun 28 2019 *)
  • PARI
    isok(n) = !(2*n % znorder(Mod(2, 2*n+1))); \\ Michel Marcus, Nov 02 2017

Extensions

Data extended up to a(68) = 170 to clarify distinction from A005097 and essentially identical sequences A130290 and A102781, by M. F. Hasler, Dec 13 2019

A195468 Lesser of overpseudo-twin-primes to base 2 defined in Comment.

Original entry on oeis.org

85487, 104651, 253241, 280601, 458987, 580337, 1082399, 1207361, 1251947, 1678541, 2811269, 3090089, 5044031, 5173601, 5590619, 9567671, 10323767, 12263129, 16324001, 18073817, 20647619, 21303341, 22849481, 25080101, 28527047, 33627299, 36307979, 43363601, 45414431
Offset: 1

Views

Author

Vladimir Shevelev, Oct 12 2011

Keywords

Comments

If h_2(n) is the multiplicative order of 2 modulo n, r_2(n) is the number of cyclotomic cosets of 2 modulo n then, by the definition, n is an overpseudoprime to base 2 if h_2(n)*r_2(n)+1=n. These numbers are in A141232.
We call numbers {n,n+2} overpseudo-twin-primes to base 2 if each of them either prime or overpseudoprime to base 2, but no two are primes.

Crossrefs

Extensions

More terms from Amiram Eldar, Sep 21 2019

A140452 2^(a(n))-1 contains an overpseudoprime divisor.

Original entry on oeis.org

11, 22, 23, 25, 28, 29, 33, 35, 36, 37, 39, 41, 43, 44, 45, 46, 47, 48, 50, 51, 52, 53, 55, 56, 57, 58, 59, 60, 63, 64, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 90, 91, 92, 94, 95, 96, 97, 99, 100, 101, 102, 103, 104, 105, 106, 108, 109
Offset: 1

Views

Author

Vladimir Shevelev, Jun 26 2008

Keywords

Comments

If p is a prime then p is in the sequence iff 2^p-1 is a composite number.

Crossrefs

Programs

  • PARI
    f(n) = my(t); sumdiv(2*n+1, d, eulerphi(d)/(t=znorder(Mod(2, d))))*t-t+1; \\ A137576
    isopp(n) = (n>1) && !isprime(n) && (n == f((n-1)/2)); \\ A141232
    isok(n) = {fordiv(2^n-1, d, if (isopp(d), return (1));); return (0);} \\ Michel Marcus, Dec 09 2018

Extensions

More terms from Michel Marcus, Dec 09 2018
Previous Showing 11-18 of 18 results.