A207035
Sum of all parts minus the total number of parts of the last section of the set of partitions of n.
Original entry on oeis.org
0, 1, 2, 5, 7, 16, 20, 39, 52, 86, 113, 184, 232, 353, 462, 661, 851, 1202, 1526, 2098, 2670, 3565, 4514, 5967, 7473, 9715, 12162, 15583, 19373, 24625, 30410, 38274, 47112, 58725, 71951, 89129, 108599, 133612, 162259, 198346, 239825, 291718, 351269, 425102
Offset: 1
For n = 7 the last section of the set of partitions of 7 looks like this:
.
. (. . . . . . 7)
. (. . . 4 . . 3)
. (. . . . 5 . 2)
. (. . 3 . 2 . 2)
. (1)
. (1)
. (1)
. (1)
. (1)
. (1)
. (1)
. (1)
. (1)
. (1)
. (1)
.
The sum of all parts = 7+4+3+5+2+3+2+2+1*11 = 39, on the other hand the total number of parts is 1+2+2+3+1*11 = 19, so a(7) = 39 - 19 = 20. Note that the number of dots in the picture is also equal to a(7) = 6+5+5+4 = 20.
Cf.
A006128,
A066186,
A135010,
A138121,
A138135,
A138137,
A138879,
A138880,
A187219,
A194548,
A207038.
-
b:= proc(n, i) option remember; local f, g;
if n=0 then [1, 0]
elif i<2 then [0, 0]
elif i>n then b(n, i-1)
else f:= b(n, i-1); g:= b(n-i, i);
[f[1]+g[1], f[2]+g[2] +g[1]*(i-1)]
fi
end:
a:= n-> b(n, n)[2]:
seq (a(n), n=1..50); # Alois P. Heinz, Feb 20 2012
-
b[n_, i_] := b[n, i] = Module[{f, g}, Which[n==0, {1, 0}, i<2, {0, 0}, i>n , b[n, i-1], True, f = b[n, i-1]; g = b[n-i, i]; {f[[1]] + g[[1]], f[[2]] + g[[2]] + g[[1]]*(i-1)}]]; a[n_] := b[n, n][[2]]; Table[a[n], {n, 1, 50}] (* Jean-François Alcover, Sep 13 2015, after Alois P. Heinz *)
A182734
Number of parts in all partitions of 2n that do not contain 1 as a part.
Original entry on oeis.org
0, 1, 3, 8, 17, 34, 68, 123, 219, 382, 642, 1055, 1713, 2713, 4241, 6545, 9950, 14953, 22255, 32752, 47774, 69104, 99114, 141094, 199489, 280096, 390836, 542170, 747793, 1025912, 1400425, 1902267, 2572095, 3462556, 4641516, 6196830, 8241460, 10919755, 14416885
Offset: 0
-
b:= proc(n,i) option remember; local p,q;
if n<0 then [0,0]
elif n=0 then [1,0]
elif i=1 then [0,0]
else p, q:= b(n,i-1), b(n-i,i);
[p[1]+q[1], p[2]+q[2]+q[1]]
fi
end:
a:= n-> b(2*n, 2*n)[2]:
seq(a(n), n=0..35); # Alois P. Heinz, Dec 03 2010
-
Table[Length[Flatten[DeleteCases[IntegerPartitions[2n],?(MemberQ[ #,1]&)]]], {n,0,40}] (* _Harvey P. Dale, Aug 08 2013 *)
b[n_] := DivisorSigma[0, n]-1+Sum[(DivisorSigma[0, k]-1)*(PartitionsP[n-k] - PartitionsP[n-k-1]), {k, 1, n-1}]; a[0] = 0; a[n_] := b[2n]; Table[a[n], {n, 0, 35}] (* Jean-François Alcover, Oct 07 2015 *)
A182992
Number of parts of the n-th subshell of the head of the last section of the set of partitions of any even integer >= 2n.
Original entry on oeis.org
1, 2, 5, 9, 17, 34, 55, 96, 163, 260, 413, 658, 1000, 1528, 2304, 3405, 5003, 7302, 10497, 15022, 21330, 30010, 41980, 58395, 80607, 110740, 151334, 205623, 278119, 374513, 501842, 669828, 890461, 1178960, 1555314
Offset: 1
a(5)=17 because the 5th subshell of the head of the last section of any even integer >= 10 looks like this:
(10 . . . . . . . . . )
( 5 . . . . 5 . . . . )
( 6 . . . . . 4 . . . )
( 7 . . . . . . 3 . . )
( 4 . . . 3 . . 3 . . )
. (2 . )
. (2 . )
. (2 . )
. (2 . )
. (2 . )
. (2 . )
. (2 . )
The subshell has 17 parts, so a(5)=17.
A182993
Number of parts of the n-th subshell of the head of the last section of the set of partitions of any odd integer >= 2n+1.
Original entry on oeis.org
1, 2, 5, 12, 21, 39, 73, 118, 198, 326, 510, 797, 1234, 1854, 2778, 4122, 6014, 8717, 12550, 17849, 25252, 35486, 49447, 68540, 94480, 129378, 176339, 239165, 322676, 433487, 579907, 772318, 1024691, 1354445, 1783504
Offset: 1
a(5)=21 because the 5th subshell of the head of the last section of any odd integer >= 11 looks like this:
(11 . . . . . . . . . . )
( 6 . . . . . 5 . . . . )
( 7 . . . . . . 4 . . . )
( 8 . . . . . . . 3 . . )
( 4 . . . 4 . . . 3 . . )
( 5 . . . . 3 . . 3 . . )
. (2 . )
. (2 . )
. (2 . )
. (2 . )
. (2 . )
. (2 . )
. (2 . )
. (2 . )
The subshell has 21 parts, so a(5)=21.
A194803
Number of parts that are visible in one of the three views of the shell model of partitions version "Tree" with n shells.
Original entry on oeis.org
0, 1, 3, 5, 8, 11, 17, 23, 33, 46, 64, 86, 121, 161, 217, 291, 388, 507, 671, 870, 1131, 1458, 1872, 2383, 3042, 3840, 4841, 6076, 7605, 9460, 11765, 14544, 17950, 22073, 27077, 33092, 40395, 49113, 59611, 72162, 87185, 105035, 126366
Offset: 0
Illustration of one of the three views with seven shells:
1) Small version:
.
Level
1 A182732 <- 6 3 4 2 1 3 5 4 7 -> A182733
2 3 2 2 1 2 2 3
3 2 1 2
4 1
5 Table 2.0 1 Table 2.1
6 1
7 1
.
. A182742 A182982 A182743 A182983
. A182992 A182994 A182993 A182995
.
2) Large version:
.
. . . . . 1 . . . .
. . . . 1 2 . . . .
. . 1 . . 2 1 . . .
. . . 1 2 2 . . 1 .
. . . . . 2 2 1 . .
. 1 2 2 3 2 . . . .
. 2 3 2 2 1
.
The large version shows the parts labeled with the level of the part where "the level of a part" is its position in the partition. In both versions there are 23 parts that are visible, so a(7) = 23. Also using the formula we have a(7) = 7+8+8 = 23.
Cf.
A006128,
A096541,
A138135,
A135010,
A138121,
A141285,
A182732,
A182733,
A182742,
A182743,
A182982,
A182983,
A182992-
A182995,
A194804,
A194805,
A210979.
A207379
Triangle read by rows: T(n,k) = number of parts that are in the k-th column of the last section of the set of partitions of n.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 2, 2, 1, 1, 4, 4, 3, 2, 1, 1, 4, 4, 4, 3, 2, 1, 1, 7, 7, 6, 5, 3, 2, 1, 1, 8, 8, 8, 6, 5, 3, 2, 1, 1, 12, 12, 11, 10, 7, 5, 3, 2, 1, 1, 14, 14, 14, 12, 10, 7, 5, 3, 2, 1, 1, 21, 21, 20, 18, 14, 11, 7, 5, 3, 2, 1, 1
Offset: 1
Illustration of initial terms. First six rows of triangle as numbers of parts in the columns from the last sections of the first six natural numbers:
. 6
. 3 3
. 4 2
. 2 2 2
. 5 1
. 3 2 1
. 4 1 1
. 2 2 1 1
. 3 1 1 1
. 2 1 1 1 1
1 1 1 1 1 1
---------------------------------------------------
1, 1,1, 1,1,1, 2,2,1,1, 2,2,2,1,1, 4,4,3,2,1,1
...
Triangle begins:
1;
1, 1;
1, 1, 1;
2, 2, 1, 1;
2, 2, 2, 1, 1;
4, 4, 3, 2, 1, 1;
4, 4, 4, 3, 2, 1, 1;
7, 7, 6, 5, 3, 2, 1, 1;
8, 8, 8, 6, 5, 3, 2, 1, 1;
12, 12, 11, 10, 7, 5, 3, 2, 1, 1;
14, 14, 14, 12, 10, 7, 5, 3, 2, 1, 1;
21, 21, 20, 18, 14, 11, 7, 5, 3, 2, 1, 1;
A194552
Sum of all parts > 1 of all partitions of n.
Original entry on oeis.org
0, 2, 5, 13, 23, 47, 75, 131, 203, 323, 477, 729, 1041, 1517, 2132, 3012, 4134, 5718, 7713, 10453, 13918, 18538, 24357, 32037, 41612, 54040, 69538, 89362, 113925, 145095, 183473, 231697, 290899, 364577, 454632, 566016, 701436, 867800, 1069430, 1315550, 1612595
Offset: 1
-
b:= proc(n, i) option remember; local h, t;
if n<0 or i<1 then [0, 0]
elif n=0 or i=1 then [1, 0]
else h:= b(n, i-1); t:= b(n-i, i);
[h[1]+t[1], h[2]+t[2] +t[1]*i]
fi
end:
a:= n-> b(n, n)[2]:
seq(a(n), n=1..50); # Alois P. Heinz, Dec 14 2011
-
a[n_] := n PartitionsP[n] -Total@Table[PartitionsP[k], {k, 0, n - 1}]; a /@ Range[40] (* George Beck, Oct 23 2014 *)
A182735
Number of parts in all partitions of 2n+1 that do not contain 1 as a part.
Original entry on oeis.org
0, 1, 3, 8, 20, 41, 80, 153, 271, 469, 795, 1305, 2102, 3336, 5190, 7968, 12090, 18104, 26821, 39371, 57220, 82472, 117958, 167405, 235945, 330425, 459803, 636142, 875307, 1197983, 1631470, 2211377, 2983695, 4008386, 5362831, 7146335, 9486834, 12548085, 16538651
Offset: 0
-
b:= proc(n,i) option remember; local p,q;
if n<0 then [0,0]
elif n=0 then [1,0]
elif i<2 then [0,0]
else p, q:= b(n,i-1), b(n-i,i);
[p[1]+q[1], p[2]+q[2]+q[1]]
fi
end:
a:= n-> b(2*n+1, 2*n+1)[2]:
seq(a(n), n=0..35); # Alois P. Heinz, Dec 03 2010
-
b[n_, i_] := b[n, i] = Module[{p, q}, Which[n<0, {0, 0}, n == 0, {1, 0}, i < 2, {0, 0}, True, {p, q} = {b[n, i-1], b[n-i, i]}; {p[[1]] + q[[1]], p[[2]] + q[[2]] + q[[1]]}]]; a[n_] := b[2*n+1, 2*n+1][[2]]; Table[a[n], {n, 0, 35}] (* Jean-François Alcover, Oct 29 2015, after Alois P. Heinz *)
A194796
Imbalance of the number of parts of all partitions of n.
Original entry on oeis.org
0, -1, 0, -3, 0, -8, 0, -17, 3, -31, 10, -58, 22, -101, 52, -167, 104, -278, 191, -451, 344, -711, 594, -1119, 983, -1730, 1606, -2635, 2555, -3990, 3978, -5972, 6118, -8835, 9269, -12986, 13835, -18917, 20454, -27320, 29900, -39204, 43268, -55846, 62112
Offset: 1
-
b:= proc(n, i) option remember; local f, g;
if n=0 or i=1 then [1, 0]
else f:= b(n, i-1); g:= `if`(i>n, [0, 0], b(n-i, i));
[f[1]+g[1], f[2]+g[2]+g[1]]
fi
end:
a:= proc(n) option remember;
(-1)^n*(b(n-1, n-1)[2]-b(n, n)[2])+`if`(n=1, 0, a(n-1))
end:
seq(a(n), n=1..60); # Alois P. Heinz, Apr 04 2012
-
b[n_, i_] := b[n, i] = Module[{f, g}, If[n == 0 || i == 1, {1, 0}, f = b[n, i-1]; g = If[i>n, {0, 0}, b[n-i, i]]; {f[[1]] + g[[1]], f[[2]] + g[[2]] + g[[1]]}]]; a[n_] := a[n] = (-1)^n*(b[n-1, n-1][[2]] - b[n, n][[2]]) + If[n == 1, 0, a[n-1]]; Table [a[n], {n, 1, 60}] (* Jean-François Alcover, Nov 11 2015, after Alois P. Heinz *)
-
vector(50, n, sum(k=1, n, (-1)^(k-1)*(numdiv(k)-1+sum(j=1, k-1, (numdiv(j)-1)*(numbpart(k-j)-numbpart(k-j-1)))))) \\ Altug Alkan, Nov 11 2015
A208474
Sum of the sizes of the Durfee squares of all partitions of n that do not contain 1 as a part, but with a(1) = 1.
Original entry on oeis.org
1, 1, 1, 3, 3, 7, 7, 13, 16, 24, 30, 46, 55, 79, 100, 136, 169, 229, 282, 374, 462, 598, 737, 947, 1158, 1466, 1794, 2246, 2733, 3399, 4116, 5076, 6133, 7503, 9033, 10993, 13177, 15943, 19061, 22939, 27327, 32749, 38883, 46395, 54938, 65278, 77070, 91270
Offset: 1
-
b:= proc(n, i) option remember; `if`(n=0, 1,
`if`(i<1, 0, b(n, i-1)+`if`(i>n, 0, b(n-i, i))))
end:
g:= proc(n) option remember;
add(add(b(k, d)*b(n-d^2-k, d),
k=0..n-d^2)*d, d=1..floor(sqrt(n)))
end:
a:= n-> g(n)-g(n-1):
seq(a(n), n=1..70); # Alois P. Heinz, Apr 09 2012
-
b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, b[n, i-1] + If[i>n, 0, b[n-i, i]]]]; g[n_] := Sum[Sum[b[k, d]*b[n-d^2-k, d], {k, 0, n-d^2}]*d, {d, 1, Sqrt[n]}]; Table[g[n], {n, 0, 70}] // Differences (* Jean-François Alcover, Feb 21 2017, after Alois P. Heinz *)
Comments