cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A352025 a(n) = floor(sqrt(6*prime(n))).

Original entry on oeis.org

3, 4, 5, 6, 8, 8, 10, 10, 11, 13, 13, 14, 15, 16, 16, 17, 18, 19, 20, 20, 20, 21, 22, 23, 24, 24, 24, 25, 25, 26, 27, 28, 28, 28, 29, 30, 30, 31, 31, 32, 32, 32, 33, 34, 34, 34, 35, 36, 36, 37, 37, 37, 38, 38, 39, 39, 40, 40, 40, 41, 41, 41, 42, 43, 43, 43, 44
Offset: 1

Views

Author

Zak Seidov, Feb 28 2022

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Floor[Sqrt[6*Prime[k]]], {k, 50}]
  • PARI
    a(n) = sqrtint(6*prime(n)); \\ Michel Marcus, Mar 19 2022

Formula

a(n) = A000196(A138636(n)). - Michel Marcus, Mar 19 2022

A363473 Triangle read by rows: T(n, k) = k * prime(n - k + A061395(k)) for 1 < k <= n, and T(n, 1) = A008578(n).

Original entry on oeis.org

1, 2, 4, 3, 6, 9, 5, 10, 15, 8, 7, 14, 21, 12, 25, 11, 22, 33, 20, 35, 18, 13, 26, 39, 28, 55, 30, 49, 17, 34, 51, 44, 65, 42, 77, 16, 19, 38, 57, 52, 85, 66, 91, 24, 27, 23, 46, 69, 68, 95, 78, 119, 40, 45, 50, 29, 58, 87, 76, 115, 102, 133, 56, 63, 70, 121, 31, 62, 93, 92, 145, 114, 161, 88, 99, 110, 143, 36
Offset: 1

Views

Author

Werner Schulte, Jan 05 2024

Keywords

Comments

Conjecture: this is a permutation of the natural numbers.
Generalized conjecture: Let T(n, k) = b(k) * prime(n - k + A061395(b(k))) for 1 < k <= n, and T(n, 1) = A008578(n), where b(n), n > 0, is a permutation of the natural numbers with b(1) = 1, then T(n, k), read by rows, is a permutation of the natural numbers.

Examples

			Triangle begins:
n\k :   1    2    3    4    5    6    7    8    9   10   11   12   13
=====================================================================
 1  :   1
 2  :   2    4
 3  :   3    6    9
 4  :   5   10   15    8
 5  :   7   14   21   12   25
 6  :  11   22   33   20   35   18
 7  :  13   26   39   28   55   30   49
 8  :  17   34   51   44   65   42   77   16
 9  :  19   38   57   52   85   66   91   24   27
10  :  23   46   69   68   95   78  119   40   45   50
11  :  29   58   87   76  115  102  133   56   63   70  121
12  :  31   62   93   92  145  114  161   88   99  110  143   36
13  :  37   74  111  116  155  138  203  104  117  130  187   60  169
etc.
		

Crossrefs

Programs

  • PARI
    T(n, k) = { if(k==1, if(n==1, 1, prime(n-1)), i=floor((k+1)/2);
                while(k % prime(i) != 0, i=i-1); k*prime(n-k+i)) }
    
  • SageMath
    def prime(n): return sloane.A000040(n)
    def A061395(n): return prime_pi(factor(n)[-1][0]) if n > 1 else 0
    def T(n, k):
         if k == 1: return prime(n - 1) if n > 1 else 1
         return k * prime(n - k + A061395(k))
    for n in range(1, 11): print([T(n,k) for k in range(1, n+1)])
    # Peter Luschny, Jan 07 2024

Formula

T(n, n) = A253560(n) for n > 0.
T(n, 1) = A008578(n) for n > 0.
T(n, 2) = A001747(n) for n > 1.
T(n, 3) = A112773(n) for n > 2.
T(n, 4) = A001749(n-3) for n > 3.
T(n, 5) = A001750(n-2) for n > 4.
T(n, 6) = A138636(n-4) for n > 5.
T(n, 7) = A272470(n-3) for n > 6.

A367449 Numbers k for which there are exactly k pairs (i, j), 1 <= i < j < k, such that i + j is a divisor of k.

Original entry on oeis.org

30, 42, 54, 66, 78, 102, 114, 138, 174, 186, 208, 222, 246, 258, 282, 318, 354, 366, 402, 426, 438, 474, 498, 534, 582, 606, 618, 642, 654, 678, 762, 786, 822, 834, 894, 906, 942, 978, 1002, 1038, 1074, 1086, 1146, 1158, 1182, 1194, 1266, 1312, 1338, 1362, 1374
Offset: 1

Views

Author

Marius A. Burtea, Dec 10 2023

Keywords

Comments

Numbers k >= 1 for which A367588(k) = Sum_{d|k} floor((d-1)/2) = k;
Numbers k >= 1 for which A000203(k) - A000005(k) - A183063(k) = 2*k.
The sequence is infinite because all numbers of the form m = 6*p, p >= 5 prime (A138636), are terms.
Indeed: sigma(6*p) - tau(6*p) - A183063(6*p) = 3*4*(p + 1) - 8 - 4 = 12*p = 2*m.
If m = 2^k*p, p = 2^(k + 1) - 4*k - 3 prime number, then m is a term. Indeed: sigma(m) - tau(m) - A183063(m) = (2^(k + 1) - 1)*(p + 1) - 2*(k + 1) - 2*k = 2*m.

Examples

			30 is a term since it has exactly 30 pairs (i,j): (1, 2), (2, 3), (1, 4), (2, 4), (1, 5), (4, 6), (3, 7), (2, 8), (7, 8), (1,9), (6, 9), (5, 10), (4, 11), (3, 12), (2, 13), (1, 14), (14, 16), (13, 17),(12, 18), (11, 19), (10, 20), (9, 21), (8, 22), (7, 23), (6, 24), (5, 25), (4,26), (3, 27), (2, 28), (1, 29).
		

Crossrefs

Fixed points of A367588.

Programs

  • Magma
    [k:k in [1..1000]|(DivisorSigma(1,k)-#Divisors(k)-#[d:d in Divisors(k)| IsEven(d)]) eq 2*k ];
    
  • Maple
    filter:= proc(n) uses numtheory;
      sigma(n) - tau(n) - `if`(n::even, tau(n/2),0) = 2*n
    end proc:
    select(filter, [$1..10000]); # Robert Israel, Dec 12 2023
  • Mathematica
    f1[p_, e_] := e+1; f1[2, e_] := 2*e+1; f2[p_, e_] := (p^(e+1)-1)/(p-1); s[1] = 0; s[n_] := Module[{fct = FactorInteger[n]}, Times @@ f2 @@@ fct - Times @@ f1 @@@ fct]; Select[Range[1400], s[#] == 2*# &] (* Amiram Eldar, Dec 16 2023 *)
  • PARI
    isok(k) = sumdiv(k, d, (d-1)\2) == k; \\ Michel Marcus, Dec 19 2023
Previous Showing 11-13 of 13 results.