cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 68 results. Next

A139990 Primes of the form 12*x^2+12*x*y+73*y^2.

Original entry on oeis.org

73, 97, 313, 433, 577, 937, 1153, 1657, 1753, 1777, 1993, 2113, 2593, 2617, 2833, 2953, 3433, 3457, 3673, 3793, 4177, 4273, 4297, 4513, 5113, 5857, 5953, 6793, 7297, 7537, 7873, 7993, 8377, 8713, 9337, 9817, 10177, 10513, 10657, 10993
Offset: 1

Views

Author

T. D. Noe, May 02 2008

Keywords

Comments

Discriminant=-3360. See A139827 for more information.
Also primes of the forms 48*x^2+24*x*y+73*y^2 and 33*x^2+12*x*y+52*y^2. See A140633. - T. D. Noe, May 19 2008

Programs

  • Magma
    [p: p in PrimesUpTo(11000) | p mod 840 in [73, 97, 313, 433, 577, 817]]; // Vincenzo Librandi, Aug 03 2012
  • Mathematica
    QuadPrimes2[12, -12, 73, 10000] (* see A106856 *)

Formula

The primes are congruent to {73, 97, 313, 433, 577, 817} (mod 840).

A139991 Primes of the form 15x^2+56y^2.

Original entry on oeis.org

71, 191, 239, 359, 431, 599, 911, 1031, 1439, 1871, 2039, 2111, 2591, 2711, 2879, 3119, 3719, 4271, 4391, 4799, 5231, 5279, 5399, 5471, 5639, 6311, 6791, 6911, 6959, 7079, 7151, 7919, 8831, 8999, 9311, 9431, 9479, 9839, 10151, 10271, 11159
Offset: 1

Views

Author

T. D. Noe, May 02 2008

Keywords

Comments

Discriminant=-3360. See A139827 for more information.
Also primes of the forms 39x^2+12xy+44y^2 and 36x^2+12xy+71y^2. See A140633. - T. D. Noe, May 19 2008

Programs

  • Magma
    [p: p in PrimesUpTo(12000) | p mod 840 in [71, 191, 239, 359, 431, 599]]; // Vincenzo Librandi, Aug 03 2012
  • Mathematica
    QuadPrimes2[15, 0, 56, 10000] (* see A106856 *)

Formula

The primes are congruent to {71, 191, 239, 359, 431, 599} (mod 840).

A139992 Primes of the form 20x^2+20xy+47y^2.

Original entry on oeis.org

47, 167, 383, 503, 647, 887, 983, 1223, 1487, 1823, 1847, 2063, 2663, 2687, 2903, 3023, 3167, 3407, 3527, 3863, 4007, 4583, 4703, 5087, 5927, 6047, 6263, 6863, 7103, 7607, 7703, 7727, 8447, 8543, 8783, 9623, 9743, 9887, 10223, 10247, 10463
Offset: 1

Views

Author

T. D. Noe, May 02 2008

Keywords

Comments

Discriminant=-3360. See A139827 for more information.
Also primes of the forms 47x^2+40xy+80y^2 and 47x^2+42xy+63y^2. See A140633. - T. D. Noe, May 19 2008

Programs

  • Magma
    [p: p in PrimesUpTo(12000) | p mod 840 in [47, 143, 167, 383, 503, 647]]; // Vincenzo Librandi, Aug 03 2012
  • Mathematica
    QuadPrimes2[20, -20, 47, 10000] (* see A106856 *)

Formula

The primes are congruent to {47, 143, 167, 383, 503, 647} (mod 840).

A139993 Primes of the form 21x^2+40y^2.

Original entry on oeis.org

61, 181, 229, 349, 661, 829, 1021, 1069, 1669, 1741, 1861, 2029, 2341, 2749, 3181, 3541, 3709, 4021, 4261, 4549, 4861, 5101, 5701, 5869, 6229, 6709, 6781, 6949, 7069, 7549, 7621, 7741, 7789, 8221, 8389, 8461, 8581, 8629, 9421, 9901, 10069
Offset: 1

Views

Author

T. D. Noe, May 02 2008

Keywords

Comments

Discriminant=-3360. See A139827 for more information.
Also primes of the form 45x^2+30xy+61y^2. See A140633. - T. D. Noe, May 19 2008

Programs

  • Magma
    [p: p in PrimesUpTo(12000) | p mod 840 in [61, 181, 229, 349, 661, 829]]; // Vincenzo Librandi, Aug 03 2012
  • Mathematica
    QuadPrimes2[21, 0, 40, 10000] (* see A106856 *)

Formula

The primes are congruent to {61, 181, 229, 349, 661, 829} (mod 840).

A139996 Primes of the form 28x^2+28xy+37y^2.

Original entry on oeis.org

37, 277, 373, 613, 757, 877, 1093, 1117, 1213, 1453, 1597, 1933, 2053, 2293, 2437, 2557, 2797, 3613, 3637, 3733, 4813, 4957, 5077, 5413, 5653, 6133, 6637, 6997, 7333, 7477, 7933, 8317, 8677, 9013, 9157, 9277, 9613, 10333, 10357, 10453, 10837
Offset: 1

Views

Author

T. D. Noe, May 02 2008

Keywords

Comments

Discriminant=-3360. See A139827 for more information.
Also primes of the forms 37x^2+18xy+93y^2 and 37x^2+24xy+72y^2. See A140633. - T. D. Noe, May 19 2008

Programs

  • Magma
    [p: p in PrimesUpTo(12000) | p mod 840 in [37, 253, 277, 373, 613, 757]]; // Vincenzo Librandi, Aug 03 2012
  • Mathematica
    QuadPrimes2[28, -28, 37, 10000] (* see A106856 *)

Formula

The primes are congruent to {37, 253, 277, 373, 613, 757} (mod 840).

A140003 Primes of the form 8x^2+8xy+167y^2.

Original entry on oeis.org

167, 263, 503, 743, 887, 1223, 1487, 1583, 1823, 1847, 2063, 2087, 2207, 2543, 2903, 3167, 3407, 3527, 3863, 4127, 4463, 4583, 4703, 4967, 5783, 5807, 5903, 6047, 6287, 6863, 7103, 7127, 7487, 7607, 7823, 8087, 8423, 8447, 8543, 8663
Offset: 1

Views

Author

T. D. Noe, May 02 2008

Keywords

Comments

Discriminant = -5280. See A139827 for more information.
Also primes of the forms 32x^2+16xy+167y^2 and 32x^2+24xy+87y^2. See A140633. - T. D. Noe, May 19 2008

Programs

  • Magma
    [p: p in PrimesUpTo(12000) | p mod 1320 in [167, 263, 503, 527, 623, 743, 767, 887, 1007, 1223]]; // Vincenzo Librandi, Aug 04 2012
  • Mathematica
    QuadPrimes2[8, -8, 167, 10000] (* see A106856 *)

Formula

The primes are congruent to {167, 263, 503, 527, 623, 743, 767, 887, 1007, 1223} (mod 1320).

A140008 Primes of the form 24x^2+55y^2.

Original entry on oeis.org

79, 151, 271, 439, 919, 1231, 1399, 1471, 1759, 1999, 2239, 2551, 2719, 2791, 3079, 3319, 3511, 3559, 4111, 4231, 4639, 4759, 4831, 5431, 6079, 6151, 6199, 6679, 6871, 6991, 7039, 8191, 8311, 8599, 8719, 8839, 9151, 9319, 9391, 9511, 9631
Offset: 1

Views

Author

T. D. Noe, May 02 2008

Keywords

Comments

Discriminant = -5280. See A139827 for more information.
Also primes of the form 39x^2+36xy+76y^2. See A140633. - T. D. Noe, May 19 2008

Programs

  • Magma
    [p: p in PrimesUpTo(12000) | p mod 1320 in [79, 151, 271, 391, 439, 679, 799, 871, 919, 1231]]; // Vincenzo Librandi, Aug 04 2012
  • Mathematica
    QuadPrimes2[24, 0, 55, 10000] (* see A106856 *)

Formula

The primes are congruent to {79, 151, 271, 391, 439, 679, 799, 871, 919, 1231} (mod 1320).

A140010 Primes of the form 33x^2+40y^2.

Original entry on oeis.org

73, 193, 337, 457, 673, 937, 1033, 1297, 1657, 1777, 1993, 2593, 2617, 2713, 2833, 2857, 3313, 3673, 4153, 4177, 4297, 4993, 5233, 5737, 5953, 6217, 6553, 6577, 6673, 6793, 7057, 7537, 7873, 7993, 8377, 9433, 9697, 10177, 10273, 10513, 10753
Offset: 1

Views

Author

T. D. Noe, May 02 2008

Keywords

Comments

Discriminant = -5280. See A139827 for more information.
Also primes of the form 52x^2+36xy+57y^2. See A140633. - T. D. Noe, May 19 2008

Programs

  • Magma
    [p: p in PrimesUpTo(12000) | p mod 1320 in [73, 193, 217, 337, 457, 673, 937, 1033, 1273, 1297]]; // Vincenzo Librandi, Aug 04 2012
  • Mathematica
    QuadPrimes2[33, 0, 40, 10000] (* see A106856 *)

Formula

The primes are congruent to {73, 193, 217, 337, 457, 673, 937, 1033, 1273, 1297} (mod 1320).

A140613 Primes of the form 7*x^2 + 6*x*y + 39*y^2.

Original entry on oeis.org

7, 79, 127, 151, 271, 439, 607, 919, 967, 1063, 1231, 1327, 1399, 1447, 1471, 1663, 1759, 1999, 2239, 2287, 2383, 2503, 2551, 2647, 2719, 2767, 2791, 3079, 3319, 3343, 3511, 3559, 3583, 3607, 3823, 3847, 3967, 4111, 4231, 4567, 4639, 4663
Offset: 1

Views

Author

T. D. Noe, May 19 2008

Keywords

Comments

Discriminant=-1056. Also primes of the form 7x^2 + 4xy + 76y^2.
In base 12, the sequence is 7, 67, X7, 107, 1X7, 307, 427, 647, 687, 747, 867, 927, 987, X07, X27, E67, 1027, 11X7, 1367, 13X7, 1467, 1547, 1587, 1647, 16X7, 1727, 1747, 1947, 1E07, 1E27, 2047, 2087, 20X7, 2107, 2267, 2287, 2367, 2467, 2547, 2787, 2827, 2847, where X is 10 and E is 11. Moreover, the discriminant is -740. - Walter Kehowski, Jun 01 2008

Crossrefs

Cf. A140633.

Programs

  • Mathematica
    Union[QuadPrimes2[7, 6, 39, 10000], QuadPrimes2[7, -6, 39, 10000]] (* see A106856 *)
  • PARI
    select(n-> n%264==7 || n%264==79 || n%264==127 || n%264==151 || n%264==175, primes(100000)) \\ N. J. A. Sloane, Jun 07 2014

Formula

These are exactly the primes congruent to one of 7, 79, 127, 151, or 175 (mod 264) [Voight]. - N. J. A. Sloane, Jun 07 2014

Extensions

Incorrect Mathematica program deleted by N. J. A. Sloane, Jun 07 2014

A140614 Primes of the form 15x^2+12xy+20y^2.

Original entry on oeis.org

23, 47, 71, 191, 311, 383, 599, 647, 719, 839, 863, 911, 983, 1103, 1367, 1439, 1511, 1607, 1871, 2039, 2399, 2423, 2447, 2663, 2687, 2711, 2927, 3023, 3191, 3359, 3623, 3719, 3767, 4007, 4079, 4271, 4679, 4799, 4871, 4943, 5039, 5087, 5303
Offset: 1

Views

Author

T. D. Noe, May 19 2008

Keywords

Comments

Discriminant=-1056. Also primes of the form 23x^2+12xy+36y^2.
In base 12 the sequence is 1E, 3E, 5E, 13E, 21E, 27E, 41E, 45E, 4EE, 59E, 5EE, 63E, 69E, 77E, 95E, 9EE, X5E, E1E, 10EE, 121E, 147E, 149E, 14EE, 165E, 167E, 169E, 183E, 18EE, 1X1E, 1E3E, 211E, 219E, 221E, 239E, 243E, 257E, 285E, 293E, 299E, 2X3E, 2XEE, 2E3E, 309E, where X is 10 and E is 11. Moreover, the discriminant is -740. - Walter Kehowski, May 31 2008

Crossrefs

Cf. A140633.

Programs

  • Mathematica
    Union[QuadPrimes2[15, 12, 20, 10000], QuadPrimes2[15, -12, 20, 10000]] (* see A106856 *)
Previous Showing 41-50 of 68 results. Next