A161552
E.g.f. satisfies: A(x,y) = exp(x*y*exp(x*A(x,y))).
Original entry on oeis.org
1, 0, 1, 0, 2, 1, 0, 3, 12, 1, 0, 4, 72, 48, 1, 0, 5, 320, 810, 160, 1, 0, 6, 1200, 8640, 6480, 480, 1, 0, 7, 4032, 70875, 143360, 42525, 1344, 1, 0, 8, 12544, 489888, 2240000, 1792000, 244944, 3584, 1, 0, 9, 36864, 3000564, 27869184, 49218750, 18579456, 1285956, 9216, 1
Offset: 0
Triangle begins:
1;
0,1;
0,2,1;
0,3,12,1;
0,4,72,48,1;
0,5,320,810,160,1;
0,6,1200,8640,6480,480,1;
0,7,4032,70875,143360,42525,1344,1;
0,8,12544,489888,2240000,1792000,244944,3584,1;
0,9,36864,3000564,27869184,49218750,18579456,1285956,9216,1; ...
-
Join[{1}, Table[Binomial[n, k]*(n - k + 1)^(k - 1)*k^(n - k), {n, 1, 10}, {k, 0, n}]] // Flatten (* G. C. Greubel, Nov 18 2017 *)
-
{T(n,k)=binomial(n,k)*(n-k+1)^(k-1)*k^(n-k)}
-
{T(n,k)=local(A=1+x); for(i=0,n, A=exp(x*y*exp(x*A+O(x^n)))); n!*polcoeff(polcoeff(A,n,x),k,y)}
A367721
E.g.f. satisfies A(x) = exp(x*A(-x^2)).
Original entry on oeis.org
1, 1, 1, -5, -23, 1, 601, 7771, 26545, -401183, -6965999, -42828389, 528611161, 15543020065, 141983039017, -2393449681349, -83586615493919, -708151768946879, 15447932991283105, 635290179334026427, 7146984268771158601, -162583738763505944639
Offset: 0
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=(i-1)!*sum(j=0, (i-1)\2, (-1)^j*(2*j+1)*v[j+1]*v[i-2*j]/(j!*(i-1-2*j)!))); v;
A367722
E.g.f. satisfies A(x) = exp(x*A(-x^3)).
Original entry on oeis.org
1, 1, 1, 1, -23, -119, -359, 1681, 38641, 269137, 599761, -22461119, -347288039, -8704873319, -73184815703, 16491842641, 26323288948321, 725566429691041, 7867441656997921, -20568394299884543, -4768992217846599479, -108339469662214468439
Offset: 0
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=(i-1)!*sum(j=0, (i-1)\3, (-1)^j*(3*j+1)*v[j+1]*v[i-3*j]/(j!*(i-1-3*j)!))); v;
A367723
E.g.f. satisfies A(x) = exp(x*A(-x^4)).
Original entry on oeis.org
1, 1, 1, 1, 1, -119, -719, -2519, -6719, 166321, 3598561, 29882161, 159572161, -389343239, -55939643759, -974399385959, -9282412863359, -46891283580959, 1814094098389441, 67045782535457761, 1076141148146824321, 61735522719009663721, 1058382395842664859121
Offset: 0
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=(i-1)!*sum(j=0, (i-1)\4, (-1)^j*(4*j+1)*v[j+1]*v[i-4*j]/(j!*(i-1-4*j)!))); v;
A385140
E.g.f. A(x) satisfies A(x) = exp(2*x*A(-x)^(1/2)).
Original entry on oeis.org
1, 2, 0, -22, -16, 1042, 1792, -116758, -330496, 24101090, 96518144, -7976308118, -41609056256, 3875582805746, 25008143335424, -2601876338050582, -20048671462064128, 2308957345471798978, 20711293319504723968, -2618684079639256157974, -26823633677081126109184
Offset: 0
A385141
E.g.f. A(x) satisfies A(x) = exp(3*x*A(-x)^(1/3)).
Original entry on oeis.org
1, 3, 3, -36, -147, 1728, 14391, -193344, -2572263, 39702528, 744878859, -13061956608, -320684319675, 6310454624256, 192965057926335, -4214431981191168, -155017339047231951, 3722456794316931072, 160513751565607780755, -4204149732317088448512
Offset: 0
Comments