A225415
Triangle read by rows: absolute values of odd-numbered rows of A225434.
Original entry on oeis.org
1, 1, 58, 1, 1, 1556, 12006, 1556, 1, 1, 39054, 1461615, 5647300, 1461615, 39054, 1, 1, 976552, 135028828, 1838120344, 4873361350, 1838120344, 135028828, 976552, 1, 1, 24414050, 11462721645, 414730580760, 3221733789330, 6783391017228, 3221733789330, 414730580760, 11462721645, 24414050, 1
Offset: 1
Triangle begins:
1;
1, 58, 1;
1, 1556, 12006, 1556, 1;
1, 39054, 1461615, 5647300, 1461615, 39054, 1;
1, 976552, 135028828, 1838120344, 4873361350, 1838120344, 135028828, 976552, 1;
-
(* First program *)
t[n_, k_, m_]:= t[n, k, m]= If[k==1 || k==n, 1,(m*n-m*k+1)*t[n-1, k-1, m] + (m*k-(m-1))*t[n-1, k, m]];
T[n_, k_]:= T[n, k] = t[n+1, k+1,4]; (* t(n,k,4) = A142459 *)
Flatten[Table[CoefficientList[Sum[T[n, k]*x^k, {k,0,n}]/(1+x), x], {n,1,14,2}]]
(* Second program *)
t[n_, k_, m_]:= t[n, k, m]= If[k==1 || k==n, 1, (m*n-m*k+1)*t[n-1,k-1,m] + (m*k-m+1)*t[n-1,k,m]]; (* t(n,k,4) = A142459 *)
T[n_, k_]:= T[n, k]= Sum[ (-1)^(k-j-1)*t[2*n,j+1,4], {j,0,k-1}];
Table[T[n, k], {n,12}, {k,2*n-1}]//Flatten (* G. C. Greubel, Mar 19 2022 *)
-
@CachedFunction
def T(n, k, m):
if (k==1 or k==n): return 1
else: return (m*(n-k)+1)*T(n-1, k-1, m) + (m*k-m+1)*T(n-1, k, m)
def A142459(n, k): return T(n, k, 4)
def A225415(n,k): return sum( (-1)^(k-j-1)*A142459(2*n, j+1) for j in (0..k-1) )
flatten([[A225415(n, k) for k in (1..2*n-1)] for n in (1..12)]) # G. C. Greubel, Mar 19 2022
A152971
A vector sequence with set row sum function: row(n)=(2*n)!/n! and linear build up and decline function: f(n,m)=Floor[(m/n)*row(n)].
Original entry on oeis.org
1, 1, 1, 1, 10, 1, 1, 59, 59, 1, 1, 210, 1258, 210, 1, 1, 3024, 12095, 12095, 3024, 1, 1, 55440, 110880, 332638, 110880, 55440, 1, 1, 1235520, 2471040, 4942079, 4942079, 2471040, 1235520, 1, 1, 32432400, 64864800, 97297200, 129729598, 97297200
Offset: 0
{1},
{1, 1},
{1, 10, 1},
{1, 59, 59, 1},
{1, 210, 1258, 210, 1},
{1, 3024, 12095, 12095, 3024, 1},
{1, 55440, 110880, 332638, 110880, 55440, 1},
{1, 1235520, 2471040, 4942079, 4942079, 2471040, 1235520, 1},
{1, 32432400, 64864800, 97297200, 129729598, 97297200, 64864800, 32432400, 1},
{1, 980179200, 1960358400, 2940537600, 2940537599, 2940537599, 2940537600, 1960358400, 980179200, 1},
{1, 33522128640, 67044257280, 100566385920, 134088514560, -2, 134088514560, 100566385920, 67044257280, 33522128640, 1}
-
Clear[v, n, row, f]; row[n_] = (2*n)!/n!;
f[n_, m_] = Floor[(m/n)*row[n]/2]; v[0] = {1}; v[1] = {1, 1};
v[n_] := v[n] = If[Mod[n, 2] == 0, Join[{1}, Table[ f[n, m], {m, 1, Floor[ n/2] - 1}], {row[n] - 2*Sum[ f[n, m], {m, 1, Floor[n/2] - 1}] - 2}, Table[ f[n, m], {m, Floor[n/ 2] - 1, 1, -1}], { 1}],
Join[{1}, Table[ f[n, m], {m, 1, Floor[n/2] - 1}], {row[n]/2 - Sum[ f[n, m], { m, 1, Floor[n/2] - 1}] - 1, row[n]/ 2 - Sum[ f[n, m], {m, 1, Floor[ n/2] - 1}] - 1}, Table[ f[n, m], {m, Floor[n/ 2] - 1, 1, -1}], {1}]];
Table[v[n], {n, 0, 10}]; Flatten[%]
A152972
A vector sequence with set row sum function: row(n)=-Product[3*k - 1, {k, 0, n}] and linear build up and decline function: f(n,m)=Floor[(m/n)*row(n)].
Original entry on oeis.org
1, 1, 1, 1, 8, 1, 1, 39, 39, 1, 1, 110, 658, 110, 1, 1, 1232, 4927, 4927, 1232, 1, 1, 17453, 34906, 104720, 34906, 17453, 1, 1, 299200, 598400, 1196799, 1196799, 598400, 299200, 1, 1, 6021400, 12042800, 18064200, 24085598, 18064200, 12042800
Offset: 0
{1},
{1, 1},
{1, 8, 1},
{1, 39, 39, 1},
{1, 110, 658, 110, 1},
{1, 1232, 4927, 4927, 1232, 1},
{1, 17453, 34906, 104720, 34906, 17453, 1},
{1, 299200, 598400, 1196799, 1196799, 598400, 299200, 1},
{1, 6021400, 12042800, 18064200, 24085598, 18064200, 12042800, 6021400, 1},
{1, 139161244, 278322488, 417483733, 417483734, 417483734, 417483733, 278322488, 139161244, 1},
{1, 3632108480, 7264216960, 10896325440, 14528433920, -2, 14528433920, 10896325440, 7264216960, 3632108480, 1}
-
Clear[v, n, row, f]; row[n_] = -Product[3*k - 1, {k, 0, n}];
f[n_, m_] = Floor[(m/n)*row[n]/2]; v[0] = {1}; v[1] = {1, 1};
v[n_] := v[n] = If[Mod[n, 2] == 0, Join[{1}, Table[ f[n, m], {m, 1, Floor[ n/2] - 1}], {row[n] - 2*Sum[ f[n, m], {m, 1, Floor[n/2] - 1}] - 2}, Table[ f[n, m], {m, Floor[n/ 2] - 1, 1, -1}], { 1}],
Join[{1}, Table[ f[n, m], {m, 1, Floor[n/2] - 1}], {row[n]/2 - Sum[ f[n, m], { m, 1, Floor[n/2] - 1}] - 1, row[n]/ 2 - Sum[ f[n, m], {m, 1, Floor[ n/2] - 1}] - 1}, Table[ f[n, m], {m, Floor[n/ 2] - 1, 1, -1}], {1}]];
Table[FullSimplify[v[n]], {n, 0, 10}]; Flatten[%]
A155917
A difference triangle of Pascal-Sierpinski 5th level and the Pascal second derivative: a(n,k)= (4*n - 4*k + 1)a(n - 1, k - 1) + (4*k - 3)a(n - 1, k); p(x,n)=(Sum[10*n*(n - 1)*a(n, k)*x^(k - 1) - D[(x + 1)^(n + 2), {x, 2}]/(x + 1), {k, n}])/2.
Original entry on oeis.org
-3, -2, -2, 0, 240, 0, 3360, 3360, -5, 30380, 105570, 30380, -5, -18, 232710, 2032620, 2032620, 232710, -18, -42, 1637748, 31186890, 74043480, 31186890, 1637748, -42, -80, 10932880, 420179760, 1990483600, 1990483600, 420179760, 10932880, -80
Offset: 1
{-3},
{-2, -2},
{0, 240},
{0, 3360, 3360},
{-5, 30380, 105570, 30380, -5},
{-18, 232710, 2032620, 2032620, 232710, -18},
{-42, 1637748, 31186890, 74043480, 31186890, 1637748, -42},
{-80, 10932880, 420179760, 1990483600, 1990483600, 420179760, 10932880, -80},
{-135, 70305480, 5213648700, 44614752120, 87013084950, 44614752120, 5213648700, 70305480, -135},
{-210, 439442910, 61202397240, 887917071960, 3020166679140, 3020166679140, 887917071960, 61202397240, 439442910, -210}
-
A[n_, 1] := 1; A[n_, n_] := 1;
A[n_, k_] := (4*n - 4*k + 1)A[n - 1, k - 1] + (4*k - 3)A[n - 1, k];
a = Table[ExpandAll[(Sum[10*n*(n - 1)*A[n, k]*x^(k - 1) - D[(x + 1)^(n + 2), {x, 2}]/(x + 1), {k, n}])/2], {n, 10}];
Table[CoefficientList[ExpandAll[a[[n]]], x], {n, 1, Length[a]}];
Flatten[%]
A157629
A general recursion triangle with third part a power triangle:m=2; Power triangle: f(n,k,m)=If[n*k*(n - k) == 0, 1, n^m - (k^m + (n - k)^m)]; Recursion: A(n,k,m)=(m*(n - k) + 1)*A(n - 1, k - 1, m) + (m*k + 1)*A(n - 1, k, m) + m*f(n, k, m)*A(n - 2, k - 1, m).
Original entry on oeis.org
1, 1, 1, 1, 10, 1, 1, 43, 43, 1, 1, 148, 590, 148, 1, 1, 469, 5018, 5018, 469, 1, 1, 1438, 34047, 91492, 34047, 1438, 1, 1, 4351, 204813, 1187731, 1187731, 204813, 4351, 1, 1, 13096, 1149652, 12609880, 27234646, 12609880, 1149652, 13096, 1, 1, 39337
Offset: 0
{1},
{1, 1},
{1, 10, 1},
{1, 43, 43, 1},
{1, 148, 590, 148, 1},
{1, 469, 5018, 5018, 469, 1},
{1, 1438, 34047, 91492, 34047, 1438, 1},
{1, 4351, 204813, 1187731, 1187731, 204813, 4351, 1},
{1, 13096, 1149652, 12609880, 27234646, 12609880, 1149652, 13096, 1},
{1, 39337, 6188356, 117961172, 478838974, 478838974, 117961172, 6188356, 39337, 1},
{1, 118066, 32448653, 1015124312, 7053594482, 13257922028, 7053594482, 1015124312, 32448653, 118066, 1}
-
A[n_, 0, m_] := 1; A[n_, n_, m_] := 1;
A[n_, k_, m_] := (m*(n - k) + 1)*A[n - 1, k - 1, m] + (m*k + 1)*A[n - 1, k, m] + m*f[n, k, m]*A[n - 2, k - 1, m];
Table[A[n, k, m], {m, 0, 10}, {n, 0, 10}, {k, 0, n}];
Table[Flatten[Table[Table[A[n, k, m], {k, 0, n}], {n, 0, 10}]], {m, 0, 10}]
Table[Table[Sum[A[n, k, m], {k, 0, n}], {n, 0, 10}], {m, 0, 10}];
Comments