cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A143288 Number of binary words of length n containing at least one subword 10^{8}1 and no subwords 10^{i}1 with i<8.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 15, 21, 29, 39, 51, 65, 81, 99, 120, 146, 180, 225, 284, 360, 456, 575, 720, 895, 1106, 1362, 1676, 2065, 2550, 3156, 3912, 4851, 6011, 7437, 9184, 11321, 13936, 17141, 21077, 25919, 31881, 39222, 48254
Offset: 0

Views

Author

Alois P. Heinz, Aug 04 2008

Keywords

Examples

			a(11)=2 because 2 binary words of length 11 have at least one subword 10^{8}1 and no subwords 10^{i}1 with i<8: 01000000001, 10000000010.
		

Crossrefs

Cf. A005711, A017904, 8th column of A143291.

Programs

  • Maple
    a:= n-> coeff(series(x^10/((x^9+x-1)*(x^10+x-1)), x, n+1), x, n):
    seq(a(n), n=0..70);
  • Mathematica
    CoefficientList[Series[x^10 / ((x^9 + x - 1) (x^10 + x - 1)), {x, 0, 60}], x] (* Vincenzo Librandi, Jun 04 2013 *)
    LinearRecurrence[{2,-1,0,0,0,0,0,0,1,0,-1,0,0,0,0,0,0,0,-1},{0,0,0,0,0,0,0,0,0,0,1,2,3,4,5,6,7,8,9},60] (* Harvey P. Dale, Oct 12 2018 *)
  • PARI
    Vec(1/((x^9+x-1)(x^10+x-1))+O(x^99)) \\ Charles R Greathouse IV, Jun 04 2013

Formula

G.f.: x^10/((x^9+x-1)*(x^10+x-1)).
a(n) = A005711(n+7)-A017904(n+19).
a(n) = 2a(n-1) - a(n-2) + a(n-9) - a(n-11) - a(n-19). - Charles R Greathouse IV, Jun 04 2013

A143289 Number of binary words of length n containing at least one subword 10^{9}1 and no subwords 10^{i}1 with i<9.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 16, 22, 30, 40, 52, 66, 82, 100, 120, 143, 171, 207, 254, 315, 393, 491, 612, 759, 935, 1144, 1392, 1688, 2045, 2480, 3014, 3672, 4483, 5480, 6700, 8185, 9984, 12156, 14774, 17930, 21740, 26349, 31936
Offset: 0

Views

Author

Alois P. Heinz, Aug 04 2008

Keywords

Examples

			a(12)=2 because 2 binary words of length 12 have at least one subword 10^{9}1 and no subwords 10^{i}1 with i<9: 010000000001, 100000000010.
		

Crossrefs

Cf. A017904, A017905, 9th column of A143291.

Programs

  • Magma
    [n le 11 select 0 else n le 21 select n-11 else 2*Self(n-1)-Self(n-2) +Self(n-10)-Self(n-12)-Self(n-21): n in [1..60]]; // Vincenzo Librandi, Jun 05 2013
  • Maple
    a:= n-> coeff(series(x^11/((x^10+x-1)*(x^11+x-1)), x, n+1), x, n):
    seq(a(n), n=0..60);
  • Mathematica
    CoefficientList[Series[x^11 / ((x^10 + x - 1) (x^11 + x - 1)), {x, 0, 60}], x] (* Vincenzo Librandi, Jun 05 2013 *)

Formula

G.f.: x^11/((x^10+x-1)*(x^11+x-1)).
a(n) = A017904(n+19)-A017905(n+21).
a(n) = 2*a(n-1) -a(n-2) +a(n-10) -a(n-12) -a(n-21). - Vincenzo Librandi, Jun 05 2013

A143290 Number of binary words of length n containing at least one subword 10^{10}1 and no subwords 10^{i}1 with i<10.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 17, 23, 31, 41, 53, 67, 83, 101, 121, 143, 168, 198, 236, 285, 348, 428, 528, 651, 800, 978, 1188, 1434, 1722, 2061, 2464, 2948, 3534, 4247, 5116, 6174, 7458, 9009, 10873, 13103, 15762, 18927
Offset: 0

Views

Author

Alois P. Heinz, Aug 04 2008

Keywords

Examples

			a(13)=2 because 2 binary words of length 13 have at least one subword 10^{10}1 and no subwords 10^{i}1 with i<10: 0100000000001, 1000000000010.
		

Crossrefs

Cf. A017905, A017906, 10th column of A143291.

Programs

  • Magma
    [n le 12 select 0 else n le 23 select n-12 else 2*Self(n-1)-Self(n-2) +Self(n-11)-Self(n-13)-Self(n-23): n in [1..60]]; // Vincenzo Librandi, Jun 05 2013
  • Maple
    a:= n-> coeff(series(x^12/((x^11+x-1)*(x^12+x-1)), x, n+1), x, n):
    seq(a(n), n=0..60);
  • Mathematica
    CoefficientList[Series[x^12 / ((x^11 + x - 1) (x^12 + x - 1)), {x, 0, 60}], x] (* Vincenzo Librandi, Jun 05 2013 *)
    LinearRecurrence[{2,-1,0,0,0,0,0,0,0,0,1,0,-1,0,0,0,0,0,0,0,0,0,-1},{0,0,0,0,0,0,0,0,0,0,0,0,1,2,3,4,5,6,7,8,9,10,11},80] (* Harvey P. Dale, Aug 20 2021 *)

Formula

G.f.: x^12/((x^11+x-1)*(x^12+x-1)).
a(n) = A017905(n+21)-A017906(n+23).
a(n) = 2*a(n-1) -a(n-2) +a(n-11) -a(n-13) -a(n-23). - Vincenzo Librandi, Jun 05 2013
Previous Showing 11-13 of 13 results.