cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 22 results. Next

A261026 Decimal expansion of Cl_2(3*Pi/4), where Cl_2 is the Clausen function of order 2.

Original entry on oeis.org

5, 2, 3, 8, 8, 9, 3, 5, 3, 9, 6, 1, 5, 9, 3, 8, 4, 9, 1, 9, 0, 6, 2, 2, 7, 8, 5, 5, 9, 4, 0, 0, 3, 6, 1, 1, 7, 4, 3, 7, 1, 6, 2, 8, 4, 5, 1, 9, 8, 9, 4, 3, 9, 4, 4, 4, 3, 3, 6, 4, 0, 7, 4, 8, 4, 2, 2, 7, 4, 1, 5, 5, 1, 6, 1, 6, 4, 2, 2, 5, 1, 4, 8, 5, 2, 2, 4, 5, 4, 6, 4, 2, 1, 3, 3, 0, 1, 7, 0, 9, 9, 9, 7, 0, 9
Offset: 0

Views

Author

Jean-François Alcover, Aug 07 2015

Keywords

Examples

			0.52388935396159384919062278559400361174371628451989439444336407484...
		

Crossrefs

Cf. A006752 (Cl_2(Pi/2) = Catalan's constant), A143298 (Cl_2(Pi/3) = Gieseking's constant), A261024 (Cl_2(2*Pi/3)), A261025 (Cl_2(Pi/4)), A261027 (Cl_2(Pi/6)), A261028 (Cl_2(5*Pi/6)).

Programs

  • Mathematica
    Cl2[x_] := (I/2)*(PolyLog[2, Exp[-I*x]] - PolyLog[2, Exp[I*x]]); RealDigits[Cl2[3*Pi/4] // Re, 10, 105] // First

Formula

Equals 2*Pi*log(G(5/8)/G(3/8)) - 2*Pi*LogGamma(3/8) + (3*Pi/4) * log(2*Pi/sqrt(2+sqrt(2))), where G is the Barnes G function.

A145438 Decimal expansion of sum_{n=1..inf} 1/(n^3*binomial(2n,n)).

Original entry on oeis.org

5, 2, 2, 9, 4, 6, 1, 9, 2, 1, 3, 3, 3, 3, 5, 1, 0, 8, 4, 9, 1, 1, 8, 5, 1, 8, 3, 5, 2, 7, 3, 0, 3, 5, 4, 0, 1, 6, 3, 0, 4, 4, 5, 9, 1, 7, 4, 3, 9, 7, 7, 8, 4, 1, 4, 6, 5, 9, 4, 1, 0, 1, 4, 1, 4, 4, 2, 0, 7, 3, 5, 7, 7, 6, 4, 4, 1, 3, 2, 9, 9, 3, 1, 5, 0, 4, 2, 6, 2, 1, 9, 1, 3
Offset: 0

Views

Author

R. J. Mathar, Feb 08 2009

Keywords

Comments

Alexander Apelblat, Tables of Integrals and Series, Harri Deutsch, (1996), 4.1.47 gives Pi*sqrt(3)*(psi(2/3)-psi(1/3))/72-Zeta(3)/3 which is negative and therefore not correct.
Comment from Mikhail Kalmykov (kalmykov.mikhail(AT)googlemail.com), Jun 01 2009: Analytical results for this sum were also given in Eq. (8) of the Kalmykov and Veretin paper. These results confirm the last comment from Alois P. Heinz.

Examples

			0.522946...
		

Programs

  • Mathematica
    RealDigits[ N[1/18*(Sqrt[3]* Pi*(-PolyGamma[1, 2/3] + PolyGamma[1, 4/3] + 9) - 24*Zeta[3]), 105]][[1]] (* Jean-François Alcover, Nov 08 2012, after R. J. Mathar *)

Formula

Comment from Alois P. Heinz, Feb 08 2009: Maple's answer to this is: a:= sum(1/(n^3*binomial(2*n,n)), n=1..infinity); a:= 1/2 hypergeom([1, 1, 1, 1], [2, 2, 3/2], 1/4); evalf (a, 140); .522946192133335108491185183527303540163044591743977841465941014...
Equals A019693*A143298-4*A002117/3 =2*Pi*Cl_2(Pi/3)/3-4*zeta(3)/3. [From R. J. Mathar, Feb 09 2009]

A242710 Decimal expansion of "beta", a Kneser-Mahler polynomial constant (a constant related to the asymptotic evaluation of the supremum norm of polynomials).

Original entry on oeis.org

1, 3, 8, 1, 3, 5, 6, 4, 4, 4, 5, 1, 8, 4, 9, 7, 7, 9, 3, 3, 7, 1, 4, 6, 6, 9, 5, 6, 8, 5, 0, 6, 2, 4, 1, 2, 6, 2, 8, 9, 6, 3, 7, 2, 6, 2, 2, 3, 9, 0, 7, 0, 5, 6, 0, 1, 9, 8, 7, 6, 4, 8, 4, 5, 3, 0, 0, 5, 5, 4, 9, 6, 3, 6, 3, 6, 6, 3, 6, 2, 4, 5, 4, 0, 8, 6, 3, 9, 7, 6, 7, 9, 5, 4, 4, 2, 8, 1, 1, 6
Offset: 1

Views

Author

Jean-François Alcover, May 21 2014

Keywords

Examples

			1.38135644451849779337146695685...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003; see Section 3.10, Kneser-Mahler polynomial constants, p. 232, and Section 5.23, Monomer-dimer constants, p. 408.

Crossrefs

Programs

  • Mathematica
    Exp[(PolyGamma[1, 4/3] - PolyGamma[1, 2/3] + 9)/(4*Sqrt[3]*Pi)] // RealDigits[#, 10, 100]& // First

Formula

beta = exp(G/Pi) = exp((PolyGamma(1, 4/3) - PolyGamma(1, 2/3) + 9)/(4*sqrt(3)*Pi)), where G is Gieseking's constant (cf. A143298) and PolyGamma(1,z) the first derivative of the digamma function psi(z).
Also equals exp(-Im(Li_2( 1/2 - (i*sqrt(3))/2))/Pi), where Li_2 is the dilogarithm function.

A258759 Decimal expansion of Ls_3(Pi/3), the value of the 3rd basic generalized log-sine integral at Pi/3 (negated).

Original entry on oeis.org

2, 0, 0, 9, 6, 6, 6, 0, 8, 1, 1, 3, 0, 5, 4, 3, 9, 0, 0, 2, 6, 2, 3, 5, 3, 7, 5, 4, 3, 4, 9, 1, 6, 4, 5, 0, 3, 8, 4, 7, 9, 3, 5, 3, 7, 0, 0, 1, 1, 0, 7, 1, 7, 9, 4, 9, 9, 0, 8, 4, 9, 6, 9, 1, 9, 1, 3, 3, 7, 7, 4, 4, 8, 3, 5, 4, 2, 5, 8, 7, 2, 4, 6, 5, 7, 1, 0, 0, 9, 9, 2, 8, 5, 3, 8, 9, 0, 7, 7, 1, 7, 7, 0, 4, 7
Offset: 1

Views

Author

Jean-François Alcover, Jun 09 2015

Keywords

Examples

			-2.0096660811305439002623537543491645038479353700110717949908496919...
		

Crossrefs

Cf. A258749 (Ls_3(Pi)), A258750 (Ls_4(Pi)), A258751 (Ls_5(Pi)), A258752 (Ls_6(Pi)), A258753 (Ls_7(Pi)), A258754 (Ls_8(Pi)).
Cf. A143298 (Ls_2(Pi/3)), A258760 (Ls_4(Pi/3)), A258761 (Ls_5(Pi/3)), A258762 (Ls_6(Pi/3)), A258763 (Ls_7(Pi/3)).

Programs

  • Mathematica
    RealDigits[-7*Pi^3/108, 10, 105] // First

Formula

-Integral_{0..Pi/3} log(2*sin(x/2))^2 dx = -7*Pi^3/108.

A258760 Decimal expansion of Ls_4(Pi/3), the value of the 4th basic generalized log-sine integral at Pi/3.

Original entry on oeis.org

6, 0, 0, 9, 4, 9, 7, 5, 4, 9, 8, 1, 8, 8, 8, 8, 9, 1, 6, 2, 0, 4, 7, 8, 8, 7, 0, 6, 2, 0, 3, 2, 7, 0, 7, 4, 0, 5, 9, 6, 9, 6, 3, 2, 9, 7, 4, 3, 9, 5, 6, 8, 4, 1, 8, 8, 3, 6, 0, 6, 3, 9, 2, 6, 7, 5, 1, 5, 1, 0, 0, 4, 2, 0, 0, 2, 8, 0, 2, 2, 5, 2, 6, 8, 7, 6, 2, 3, 8, 6, 2, 3, 6, 9, 0, 5, 6, 6, 3, 5, 9, 3, 0, 5, 3
Offset: 1

Views

Author

Jean-François Alcover, Jun 09 2015

Keywords

Examples

			6.00949754981888891620478870620327074059696329743956841883606392675151...
		

Crossrefs

Cf. A258749 (Ls_3(Pi)), A258750 (Ls_4(Pi)), A258751 (Ls_5(Pi)), A258752 (Ls_6(Pi)), A258753 (Ls_7(Pi)), A258754 (Ls_8(Pi)).
Cf. A143298 (Ls_2(Pi/3)), A258759 (Ls_3(Pi/3)), A258761 (Ls_5(Pi/3)), A258762 (Ls_6(Pi/3)), A258763 (Ls_7(Pi/3)).

Programs

  • Mathematica
    RealDigits[(1/2)*Pi*Zeta[3] + (9/4)*Im[ PolyLog[4, (-1)^(1/3)] - PolyLog[4, -(-1)^(2/3)]], 10, 105] // First

Formula

-Integral_{0..Pi/3} log(2*sin(x/2))^3 dx = (1/2)*Pi*zeta(3) + (9/4)*im( PolyLog(4, (-1)^(1/3)) - PolyLog(4, -(-1)^(2/3))).
Also equals 6 * 5F4(1/2,1/2,1/2,1/2,1/2; 3/2,3/2,3/2,3/2; 1/4) (with 5F4 the hypergeometric function).

A258761 Decimal expansion of Ls_5(Pi/3), the value of the 5th basic generalized log-sine integral at Pi/3 (negated).

Original entry on oeis.org

2, 4, 0, 1, 2, 5, 3, 3, 1, 2, 5, 5, 1, 6, 9, 1, 4, 6, 1, 5, 0, 1, 5, 7, 1, 3, 9, 6, 3, 6, 3, 1, 6, 2, 6, 7, 9, 5, 0, 2, 8, 8, 4, 8, 4, 1, 0, 6, 4, 6, 3, 1, 5, 0, 2, 1, 9, 0, 1, 6, 2, 0, 7, 8, 2, 3, 3, 9, 2, 9, 9, 8, 2, 1, 7, 6, 3, 6, 8, 1, 4, 4, 4, 7, 2, 8, 9, 5, 8, 5, 8, 6, 4, 9, 1, 9, 0, 0, 1, 6, 3, 5, 2
Offset: 2

Views

Author

Jean-François Alcover, Jun 09 2015

Keywords

Examples

			-24.01253312551691461501571396363162679502884841064631502190162...
		

Crossrefs

Cf. A258749 (Ls_3(Pi)), A258750 (Ls_4(Pi)), A258751 (Ls_5(Pi)), A258752 (Ls_6(Pi)), A258753 (Ls_7(Pi)), A258754 (Ls_8(Pi)).
Cf. A143298 (Ls_2(Pi/3)), A258759 (Ls_3(Pi/3)), A258760 (Ls_4(Pi/3)), A258762 (Ls_6(Pi/3)), A258763 (Ls_7(Pi/3)).

Programs

  • Mathematica
    RealDigits[-24*HypergeometricPFQ[Table[1/2, {6}], Table[3/2, {5}], 1/4], 10, 103] // First

Formula

-Integral_{0..Pi/3} log(2*sin(x/2))^4 dx = -1543*Pi^5/19440 + 6*Gl_{4, 1}(Pi/3), where Gl is the multiple Glaisher function.
Also equals -24 * 6F5(1/2,1/2,1/2,1/2,1/2,1/2; 3/2,3/2,3/2,3/2,3/2; 1/4) (with 6F5 the hypergeometric function).

A258762 Decimal expansion of Ls_6(Pi/3), the value of the 6th basic generalized log-sine integral at Pi/3.

Original entry on oeis.org

1, 2, 0, 0, 2, 0, 7, 6, 1, 3, 7, 1, 0, 5, 5, 3, 0, 0, 1, 7, 5, 5, 0, 4, 8, 8, 8, 6, 3, 9, 1, 9, 2, 7, 6, 1, 4, 8, 3, 4, 4, 8, 9, 2, 5, 0, 4, 4, 3, 0, 1, 4, 6, 8, 9, 8, 2, 1, 6, 8, 9, 5, 1, 9, 4, 6, 3, 0, 4, 8, 6, 4, 0, 9, 9, 9, 5, 5, 0, 2, 0, 4, 5, 3, 8, 2, 5, 4, 6, 2, 8, 5, 3, 2, 9, 8, 2, 0, 6, 3, 7, 2, 5
Offset: 3

Views

Author

Jean-François Alcover, Jun 09 2015

Keywords

Examples

			120.0207613710553001755048886391927614834489250443014689821689519463 ...
		

Crossrefs

Cf. A258749 (Ls_3(Pi)), A258750 (Ls_4(Pi)), A258751 (Ls_5(Pi)), A258752 (Ls_6(Pi)), A258753 (Ls_7(Pi)), A258754 (Ls_8(Pi)).
Cf. A143298 (Ls_2(Pi/3)), A258759 (Ls_3(Pi/3)), A258760 (Ls_4(Pi/3)), A258761 (Ls_5(Pi/3)), A258763 (Ls_7(Pi/3)).

Programs

  • Mathematica
    RealDigits[120* HypergeometricPFQ[Table[1/2, {7}], Table[3/2, {6}], 1/4], 10, 103] // First

Formula

-Integral_{0..Pi/3} log(2*sin(x/2))^5 dx = (15/2)*Pi*zeta(5) + (35/36)*Pi^3*zeta(3) - (135/4)*Im(-PolyLog(6, (-1)^(1/3)) + PolyLog(6, -(-1)^(2/3))).
Also equals 120 * 7F6(1/2,1/2,...; 3/2,3/2,...; 1/4) (with 7F6 the hypergeometric function).

A258763 Decimal expansion of Ls_7(Pi/3), the value of the 7th basic generalized log-sine integral at Pi/3 (negated).

Original entry on oeis.org

7, 2, 0, 1, 2, 4, 5, 6, 8, 2, 2, 6, 3, 3, 1, 8, 0, 1, 0, 5, 3, 0, 2, 9, 3, 3, 1, 8, 3, 5, 1, 5, 6, 5, 6, 8, 9, 0, 0, 6, 9, 3, 5, 5, 0, 2, 6, 5, 8, 0, 8, 8, 1, 3, 8, 9, 3, 0, 1, 3, 7, 1, 1, 6, 7, 7, 8, 2, 9, 1, 8, 4, 5, 9, 9, 7, 3, 0, 1, 2, 2, 7, 2, 2, 9, 5, 2, 7, 7, 7, 1, 1, 9, 7, 8, 9, 2, 3, 8, 2, 3, 5, 2
Offset: 3

Views

Author

Jean-François Alcover, Jun 09 2015

Keywords

Examples

			-720.1245682263318010530293318351565689006935502658088138930137116778...
		

Crossrefs

Cf. A258749 (Ls_3(Pi)), A258750 (Ls_4(Pi)), A258751 (Ls_5(Pi)), A258752 (Ls_6(Pi)), A258753 (Ls_7(Pi)), A258754 (Ls_8(Pi)).
Cf. A143298 (Ls_2(Pi/3)), A258759 (Ls_3(Pi/3)), A258760 (Ls_4(Pi/3)), A258761 (Ls_5(Pi/3)), A258762 (Ls_6(Pi/3)).

Programs

  • Mathematica
    RealDigits[-720*HypergeometricPFQ[Table[1/2, {7}], Table[3/2, {6}], 1/4], 10, 103] // First

Formula

-Integral_{0..Pi/3} log(2*sin(x/2))^5 dx = -74369*Pi^7/326592 - (15/2) * Pi * Zeta[3]^2 + 135*Gl_{6, 1}(Pi/3), where Gl is the multiple Glaisher function.
Also equals -720 * 7F6(1/2,1/2,...; 3/2,3/2,...; 1/4) (with 7F6 the hypergeometric function).

A244345 Decimal expansion of xi_3 = 5*G, the volume of an ideal hyperbolic cube, where G is Gieseking's constant.

Original entry on oeis.org

5, 0, 7, 4, 7, 0, 8, 0, 3, 2, 0, 4, 8, 2, 6, 8, 1, 2, 5, 1, 0, 6, 0, 1, 2, 7, 7, 1, 3, 7, 2, 6, 0, 1, 4, 2, 9, 7, 0, 8, 4, 4, 6, 5, 3, 7, 6, 5, 1, 4, 9, 8, 9, 6, 0, 0, 8, 7, 4, 4, 5, 5, 3, 3, 8, 8, 2, 9, 8, 7, 3, 8, 1, 2, 9, 1, 2, 2, 0, 1, 1, 0, 6, 8, 2, 3, 5, 1, 7, 7, 1, 1, 4, 1, 2, 8, 3, 4, 7, 4, 7, 2, 9, 3
Offset: 1

Views

Author

Jean-François Alcover, Jun 26 2014

Keywords

Examples

			5.0747080320482681251060127713726...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, Section 8.9 Hyperbolic Volume Constants p. 512.

Crossrefs

Programs

  • Mathematica
    G = (9 - PolyGamma[1, 2/3] + PolyGamma[1, 4/3])/(4*Sqrt[3]); RealDigits[5*G, 10, 104] // First

Formula

5*(9 - Polygamma(1, 2/3) + Polygamma(1, 4/3)) / (4*sqrt(3)).

A384425 Decimal expansion of Sum_{k>=1} (-1)^(k+1)/(6k-5)^7 + (-1)^(k-1)/(6k-1)^7.

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 1, 5, 5, 1, 5, 6, 1, 2, 7, 1, 7, 5, 2, 1, 6, 1, 8, 6, 8, 4, 2, 7, 6, 0, 8, 2, 0, 3, 5, 0, 0, 1, 4, 1, 1, 9, 2, 6, 8, 3, 3, 5, 9, 1, 8, 9, 3, 1, 5, 7, 0, 5, 8, 9, 6, 8, 8, 6, 6, 2, 3, 1, 7, 3, 1, 3, 8, 4, 1, 9, 5, 9, 4, 5, 9, 4, 1, 5, 3, 9, 9, 4, 6, 1, 0, 2, 2, 2, 8, 5, 6, 0, 4, 6
Offset: 1

Views

Author

Jason Bard, Jun 14 2025

Keywords

Examples

			1.0000115515612717521618684276082035001411926833591...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[33367*Pi^7/100776960, 10, 1000][[1]]

Formula

Equals 33367*Pi^7/100776960.
Previous Showing 11-20 of 22 results. Next