A320073 Number of length n primitive (=aperiodic or period n) 8-ary words which are earlier in lexicographic order than any other word derived by cyclic shifts of the alphabet.
1, 7, 63, 504, 4095, 32697, 262143, 2096640, 16777152, 134213625, 1073741823, 8589901320, 68719476735, 549755551737, 4398046506945, 35184369991680, 281474976710655, 2251799796875328, 18014398509481983, 144115187941637640, 1152921504606584769
Offset: 1
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..1108
Programs
-
Maple
a:= n-> add(`if`(d=n, 8^(n-1), -a(d)), d=numtheory[divisors](n)): seq(a(n), n=1..25);
Formula
a(n) = Sum_{d|n} 8^(d-1) * mu(n/d).
a(n) = 8^(n-1) - Sum_{d
a(n) = A143325(n,8).
a(n) = A074650(n,8) * n/8.
a(n) = A143324(n,8) / 8.
G.f.: Sum_{k>=1} mu(k)*x^k/(1 - 8*x^k). - Ilya Gutkovskiy, Oct 25 2018
A320074 Number of length n primitive (=aperiodic or period n) 9-ary words which are earlier in lexicographic order than any other word derived by cyclic shifts of the alphabet.
1, 8, 80, 720, 6560, 58960, 531440, 4782240, 43046640, 387413920, 3486784400, 31380999840, 282429536480, 2541865296880, 22876792448320, 205891127311680, 1853020188851840, 16677181656560880, 150094635296999120, 1350851717285570880, 12157665459056397280
Offset: 1
Keywords
Comments
Dirichlet convolution of mu(n) with 9^(n-1).
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..1048
Programs
-
Maple
a:= n-> add(`if`(d=n, 9^(n-1), -a(d)), d=numtheory[divisors](n)): seq(a(n), n=1..25);
Formula
a(n) = Sum_{d|n} 9^(d-1) * mu(n/d).
a(n) = 9^(n-1) - Sum_{d
a(n) = A143325(n,9).
a(n) = A074650(n,9) * n/9.
a(n) = A143324(n,9) / 9.
G.f.: Sum_{k>=1} mu(k)*x^k/(1 - 9*x^k). - Ilya Gutkovskiy, Oct 25 2018
A320075 Number of length n primitive (=aperiodic or period n) 10-ary words which are earlier in lexicographic order than any other word derived by cyclic shifts of the alphabet.
1, 9, 99, 990, 9999, 99891, 999999, 9999000, 99999900, 999989991, 9999999999, 99999899010, 999999999999, 9999998999991, 99999999989901, 999999990000000, 9999999999999999, 99999999899900100, 999999999999999999, 9999999998999999010, 99999999999998999901
Offset: 1
Keywords
Comments
Dirichlet convolution of mu(n) with 10^(n-1).
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..1001
Programs
-
Maple
a:= n-> add(`if`(d=n, 10^(n-1), -a(d)), d=numtheory[divisors](n)): seq(a(n), n=1..25);
Formula
a(n) = Sum_{d|n} 10^(d-1) * mu(n/d).
a(n) = 10^(n-1) - Sum_{d
a(n) = A143325(n,10).
a(n) = A074650(n,10) * n/10.
a(n) = A143324(n,10) / 10.
G.f.: Sum_{k>=1} mu(k)*x^k/(1 - 10*x^k). - Ilya Gutkovskiy, Oct 25 2018
A320087 Number of primitive (=aperiodic) ternary words with length less than or equal to n which are earlier in lexicographic order than any other word derived by cyclic shifts of the alphabet.
1, 3, 11, 35, 115, 347, 1075, 3235, 9787, 29387, 88435, 265315, 796755, 2390347, 7173227, 21519947, 64566667, 193700035, 581120523, 1743362283, 5230145947, 15690440099, 47071499707, 141214499227, 423644035627, 1270932113627, 3812797935395, 11438393826035
Offset: 1
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..2096
Programs
-
Maple
b:= n-> add(`if`(d=n, 3^(n-1), -b(d)), d=numtheory[divisors](n)): a:= proc(n) option remember; b(n)+`if`(n<2, 0, a(n-1)) end: seq(a(n), n=1..30);
-
Mathematica
nmax = 20; Rest[CoefficientList[Series[1/(1-x) * Sum[MoebiusMu[k] * x^k / (1 - 3*x^k), {k, 1, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Dec 11 2020 *)
-
PARI
a(n) = sum(j=1, n, sumdiv(j, d, 3^(d-1)*moebius(j/d))); \\ Michel Marcus, Dec 11 2020
Formula
a(n) = Sum_{j=1..n} Sum_{d|j} 3^(d-1) * mu(j/d).
a(n) = A143327(n,3).
a(n) = Sum_{j=1..n} A143325(j,3).
a(n) = A143326(n,3) / 3.
G.f.: (1/(1 - x)) * Sum_{k>=1} mu(k) * x^k / (1 - 3*x^k). - Ilya Gutkovskiy, Dec 11 2020
A320088 Number of primitive (=aperiodic) 4-ary words with length less than or equal to n which are earlier in lexicographic order than any other word derived by cyclic shifts of the alphabet.
1, 4, 19, 79, 334, 1339, 5434, 21754, 87274, 349159, 1397734, 5590954, 22368169, 89472934, 357908119, 1431633559, 5726600854, 22906403494, 91625880229, 366503524969, 1466015148634, 5864060611159, 23456246655574, 93824986622614, 375299963333014, 1501199853398419
Offset: 1
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..1661
Programs
-
Maple
b:= n-> add(`if`(d=n, 4^(n-1), -b(d)), d=numtheory[divisors](n)): a:= proc(n) option remember; b(n)+`if`(n<2, 0, a(n-1)) end: seq(a(n), n=1..30);
-
Mathematica
nmax = 20; Rest[CoefficientList[Series[1/(1-x) * Sum[MoebiusMu[k] * x^k / (1 - 4*x^k), {k, 1, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Dec 11 2020 *)
-
PARI
a(n) = sum(j=1, n, sumdiv(j, d, 4^(d-1)*moebius(j/d))); \\ Michel Marcus, Dec 11 2020
Formula
a(n) = Sum_{j=1..n} Sum_{d|j} 4^(d-1) * mu(j/d).
a(n) = A143327(n,4).
a(n) = Sum_{j=1..n} A143325(j,4).
a(n) = A143326(n,4) / 4.
G.f.: (1/(1 - x)) * Sum_{k>=1} mu(k) * x^k / (1 - 4*x^k). - Ilya Gutkovskiy, Dec 11 2020
A320089 Number of primitive (=aperiodic) 5-ary words with length less than or equal to n which are earlier in lexicographic order than any other word derived by cyclic shifts of the alphabet.
1, 5, 29, 149, 773, 3869, 19493, 97493, 488093, 2440589, 12206213, 61031093, 305171717, 1525859213, 7629374189, 38146874189, 190734764813, 953673824213, 4768371089837, 23841855464717, 119209287089693, 596046435527189, 2980232226542813, 14901161132714813
Offset: 1
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..1431
Programs
-
Maple
b:= n-> add(`if`(d=n, 5^(n-1), -b(d)), d=numtheory[divisors](n)): a:= proc(n) option remember; b(n)+`if`(n<2, 0, a(n-1)) end: seq(a(n), n=1..30);
-
Mathematica
nmax = 20; Rest[CoefficientList[Series[1/(1-x) * Sum[MoebiusMu[k] * x^k / (1 - 5*x^k), {k, 1, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Dec 11 2020 *)
-
PARI
a(n) = sum(j=1, n, sumdiv(j, d, 5^(d-1)*moebius(j/d))); \\ Michel Marcus, Dec 11 2020
Formula
a(n) = Sum_{j=1..n} Sum_{d|j} 5^(d-1) * mu(j/d).
a(n) = A143327(n,5).
a(n) = Sum_{j=1..n} A143325(j,5).
a(n) = A143326(n,5) / 5.
G.f.: (1/(1 - x)) * Sum_{k>=1} mu(k) * x^k / (1 - 5*x^k). - Ilya Gutkovskiy, Dec 11 2020
A320090 Number of primitive (=aperiodic) 6-ary words with length less than or equal to n which are earlier in lexicographic order than any other word derived by cyclic shifts of the alphabet.
1, 6, 41, 251, 1546, 9281, 55936, 335656, 2015236, 12091631, 72557806, 435346876, 2612129211, 15672776566, 94036939331, 564221643971, 3385331551426, 20311989308806, 121871945977221, 731231675909811, 4387390115926096, 26324340695837771, 157946044538104906
Offset: 1
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..1285
Programs
-
Maple
b:= n-> add(`if`(d=n, 6^(n-1), -b(d)), d=numtheory[divisors](n)): a:= proc(n) option remember; b(n)+`if`(n<2, 0, a(n-1)) end: seq(a(n), n=1..30);
-
Mathematica
nmax = 20; Rest[CoefficientList[Series[1/(1-x) * Sum[MoebiusMu[k] * x^k / (1 - 6*x^k), {k, 1, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Dec 11 2020 *)
-
PARI
a(n) = sum(j=1, n, sumdiv(j, d, 6^(d-1)*moebius(j/d))); \\ Michel Marcus, Dec 11 2020
Formula
a(n) = Sum_{j=1..n} Sum_{d|j} 6^(d-1) * mu(j/d).
a(n) = A143327(n,6).
a(n) = Sum_{j=1..n} A143325(j,6).
a(n) = A143326(n,6) / 6.
G.f.: (1/(1 - x)) * Sum_{k>=1} mu(k) * x^k / (1 - 6*x^k). - Ilya Gutkovskiy, Dec 11 2020
A320091 Number of primitive (=aperiodic) 7-ary words with length less than or equal to n which are earlier in lexicographic order than any other word derived by cyclic shifts of the alphabet.
1, 7, 55, 391, 2791, 19543, 137191, 960391, 6725143, 47076343, 329551591, 2306861191, 16148148391, 113037041143, 791260111543, 5538820797943, 38771751367543, 271402259573191, 1899815857483639, 13298711002502839, 93090977299997143, 651636841100805895
Offset: 1
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..1184
Programs
-
Maple
b:= n-> add(`if`(d=n, 7^(n-1), -b(d)), d=numtheory[divisors](n)): a:= proc(n) option remember; b(n)+`if`(n<2, 0, a(n-1)) end: seq(a(n), n=1..30);
-
PARI
a(n) = sum(j=1, n, sumdiv(j, d, 7^(d-1)*moebius(j/d))); \\ Michel Marcus, Dec 11 2020
Formula
a(n) = Sum_{j=1..n} Sum_{d|j} 7^(d-1) * mu(j/d).
a(n) = A143327(n,7).
a(n) = Sum_{j=1..n} A143325(j,7).
a(n) = A143326(n,7) / 7.
G.f.: (1/(1 - x)) * Sum_{k>=1} mu(k) * x^k / (1 - 7*x^k). - Ilya Gutkovskiy, Dec 11 2020
A320092 Number of primitive (=aperiodic) 8-ary words with length less than or equal to n which are earlier in lexicographic order than any other word derived by cyclic shifts of the alphabet.
1, 8, 71, 575, 4670, 37367, 299510, 2396150, 19173302, 153386927, 1227128750, 9817030070, 78536506805, 628292058542, 5026338565487, 40210708557167, 321685685267822, 2573485482143150, 20587883991625133, 164703071933262773, 1317624576539847542
Offset: 1
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..1108
Programs
-
Maple
b:= n-> add(`if`(d=n, 8^(n-1), -b(d)), d=numtheory[divisors](n)): a:= proc(n) option remember; b(n)+`if`(n<2, 0, a(n-1)) end: seq(a(n), n=1..30);
-
PARI
a(n) = sum(j=1, n, sumdiv(j, d, 8^(d-1)*moebius(j/d))); \\ Michel Marcus, Dec 11 2020
Formula
a(n) = Sum_{j=1..n} Sum_{d|j} 8^(d-1) * mu(j/d).
a(n) = A143327(n,8).
a(n) = Sum_{j=1..n} A143325(j,8).
a(n) = A143326(n,8) / 8.
G.f.: (1/(1 - x)) * Sum_{k>=1} mu(k) * x^k / (1 - 8*x^k). - Ilya Gutkovskiy, Dec 11 2020
A320093 Number of primitive (=aperiodic) 9-ary words with length less than or equal to n which are earlier in lexicographic order than any other word derived by cyclic shifts of the alphabet.
1, 9, 89, 809, 7369, 66329, 597769, 5380009, 48426649, 435840569, 3922624969, 35303624809, 317733161289, 2859598458169, 25736390906489, 231627518218169, 2084647707070009, 18761829363630889, 168856464660630009, 1519708181946200889, 13677373641002598169
Offset: 1
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..1048
Programs
-
Maple
b:= n-> add(`if`(d=n, 9^(n-1), -b(d)), d=numtheory[divisors](n)): a:= proc(n) option remember; b(n)+`if`(n<2, 0, a(n-1)) end: seq(a(n), n=1..30);
-
PARI
a(n) = sum(j=1, n, sumdiv(j, d, 9^(d-1)*moebius(j/d))); \\ Michel Marcus, Dec 11 2020
Formula
a(n) = Sum_{j=1..n} Sum_{d|j} 9^(d-1) * mu(j/d).
a(n) = A143327(n,9).
a(n) = Sum_{j=1..n} A143325(j,9).
a(n) = A143326(n,9) / 9.
G.f.: (1/(1 - x)) * Sum_{k>=1} mu(k) * x^k / (1 - 9*x^k). - Ilya Gutkovskiy, Dec 11 2020
Comments