cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A379639 Smallest primitive prime factor of 6^n-1.

Original entry on oeis.org

5, 7, 43, 37, 311, 31, 55987, 1297, 19, 11, 23, 13, 3433, 29, 1171, 17, 239, 46441, 191, 241, 1822428931, 51828151, 47, 1678321, 18198701, 53, 163, 421, 7369130657357778596659, 1950271, 5333, 353, 67, 190537, 71, 73, 149, 1787, 3143401, 41, 8648131, 2527867231
Offset: 1

Views

Author

Sean A. Irvine, Dec 28 2024

Keywords

Comments

Also, smallest prime p such that 1/p has senary period n.

Crossrefs

Cf. A112927 (base 2), A143663 (base 3), A112092 (base 4), A143665 (base 5), A379639 (base 6), A379640 (base 7), A379641 (base 8), A379642 (base 9), A007138 (base 10), A379644 (base 11), A252170 (base 12).
Cf. A274907.

Programs

  • PARI
    listap(nn) = {prf = []; for (n=1, nn, vp = (factor(6^n-1)[, 1])~; f = setminus(Set(vp), Set(prf)); prf = concat(prf, f); print1(vecmin(Vec(f)), ", "); ); }

A379644 Smallest primitive prime factor of 11^n-1.

Original entry on oeis.org

2, 3, 7, 61, 3221, 37, 43, 7321, 1772893, 13421, 15797, 13, 1093, 1623931, 195019441, 17, 50544702849929377, 590077, 6115909044841454629, 212601841, 1723, 23, 829, 10657, 3001, 53, 5559917315850179173, 29, 523, 31, 50159, 51329, 661, 71707, 211, 3138426605161
Offset: 1

Views

Author

Sean A. Irvine, Dec 28 2024

Keywords

Comments

Also, smallest prime p such that 1/p has undecimal period n.

Crossrefs

Cf. A112927 (base 2), A143663 (base 3), A112092 (base 4), A143665 (base 5), A379639 (base 6), A379640 (base 7), A379641 (base 8), A379642 (base 9), A007138 (base 10), A379644 (base 11), A252170 (base 12).
Cf. A274910.

Programs

  • PARI
    listap(nn) = {prf = []; for (n=1, nn, vp = (factor(11^n-1)[, 1])~; f = setminus(Set(vp), Set(prf)); prf = concat(prf, f); print1(vecmin(Vec(f)), ", "); ); }

A218356 Minimal order of degree-n irreducible polynomials over GF(3).

Original entry on oeis.org

1, 4, 13, 5, 11, 7, 1093, 32, 757, 44, 23, 35, 797161, 547, 143, 17, 1871, 19, 1597, 25, 14209, 67, 47, 224, 8951, 398581, 109, 29, 59, 31, 683, 128, 299, 103, 71, 95, 13097927, 2851, 169, 352, 83, 43, 431, 115, 181, 188, 1223, 97, 491, 151, 12853, 53, 107
Offset: 1

Views

Author

Alois P. Heinz, Oct 27 2012

Keywords

Comments

a(n) < 3^n.
For n > 2, a(n) <= A143663(n). For odd prime n, a(n) = A143663(n). - Max Alekseyev, Apr 30 2022

Crossrefs

Programs

  • Maple
    M:= proc(n) M(n):= numtheory[divisors](3^n-1) minus U(n-1) end:
    U:= proc(n) U(n):= `if`(n=0, {}, M(n) union U(n-1)) end:
    a:= n-> min(M(n)[]):
    seq(a(n), n=1..60);
  • Mathematica
    M[n_] := M[n] = Divisors[3^n - 1]~Complement~U[n - 1];
    U[n_] := U[n] = If[n == 0, {}, M[n]~Union~U[n - 1]];
    a[n_] := Min[M[n]];
    Table[a[n], {n, 1, 60}] (* Jean-François Alcover, Oct 24 2022, after Alois P. Heinz *)

Formula

a(n) = min(M(n)) with M(n) = {d : d|(3^n-1)} \ U(n-1) and U(n) = M(n) union U(n-1) for n>0, U(0) = {}.
a(n) = A212906(n,1) = A213224(n,2).
Previous Showing 11-13 of 13 results.