cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A059885 a(n) = |{m : multiplicative order of 3 mod m = n}|.

Original entry on oeis.org

2, 2, 2, 6, 4, 10, 2, 14, 4, 16, 6, 58, 2, 10, 16, 88, 6, 108, 6, 150, 10, 54, 6, 290, 18, 10, 56, 138, 14, 716, 14, 144, 22, 118, 40, 1088, 6, 54, 90, 670, 14, 730, 6, 570, 356, 22, 30, 13864, 124, 342, 54, 138, 14, 3912, 116, 1362, 118, 238, 6, 22058, 6, 110
Offset: 1

Views

Author

Vladeta Jovovic, Feb 06 2001

Keywords

Comments

The multiplicative order of a mod m, GCD(a,m)=1, is the smallest natural number d for which a^d = 1 (mod m). a(n) = number of orders of degree-n monic irreducible polynomials over GF(3).
Also, number of primitive factors of 3^n - 1 (cf. A218356). - Max Alekseyev, May 03 2022

Examples

			a(2) = |{4,8}| = 2, a(4) = |{5,10,16,20,40,80}| = 6, a(6) = |{7,14,28,52,56,91,104,182,364,728}| = 10.
		

Crossrefs

Primitive factors of b^n - 1: A059499 (b=2), this sequence (b=3), A059886 (b=4), A059887 (b=5), A059888 (b=6), A059889 (b=7), A059890 (b=8), A059891 (b=9), A059892 (b=10).
Column k=3 of A212957.

Programs

  • Maple
    with(numtheory); A059885 := proc(n) local d,s; s := 0; for d in divisors(n) do s := s+mobius(n/d)*tau(3^d-1); od; RETURN(s); end;
  • Mathematica
    a[n_] := Sum[ MoebiusMu[n/d] * DivisorSigma[0, 3^d - 1], {d, Divisors[n]}]; Table[a[n], {n, 1, 62} ] (* Jean-François Alcover, Dec 12 2012 *)
  • PARI
    a(n) = sumdiv(n, d, moebius(n/d) * numdiv(3^d-1)); \\ Amiram Eldar, Jan 25 2025

Formula

a(n) = Sum_{ d divides n } mu(n/d)*tau(3^d-1), (mu(n) = Moebius function A008683, tau(n) = number of divisors of n A000005).

A143663 a(n) is the least prime such that the multiplicative order of 3 mod a(n) equals n, or a(n)=1 if no such prime exists.

Original entry on oeis.org

2, 1, 13, 5, 11, 7, 1093, 41, 757, 61, 23, 73, 797161, 547, 4561, 17, 1871, 19, 1597, 1181, 368089, 67, 47, 6481, 8951, 398581, 109, 29, 59, 31, 683, 21523361, 2413941289, 103, 71, 530713, 13097927, 2851, 313, 42521761, 83, 43, 431, 5501, 181, 23535794707
Offset: 1

Views

Author

Vladimir Shevelev, Aug 28 2008

Keywords

Comments

If a(n) differs from 1, then a(n) is the minimal prime divisor of A064079(n).

Crossrefs

Cf. A112927 (base 2), A143663 (base 3), A112092 (base 4), A143665 (base 5), A379639 (base 6), A379640 (base 7), A379641 (base 8), A379642 (base 9), A007138 (base 10), A379644 (base 11), A252170 (base 12).

Programs

  • Maple
    a:= proc(n) local f,p;
    f:= numtheory:-factorset(3^n - 1);
    for  p in f do
       if numtheory:-order(3,p) = n then return p fi
    od:
    1
    end proc:
    seq(a(n),n=1..100); # Robert Israel, Oct 13 2014
  • Mathematica
    p = 2; t = Table[0, {100}]; While[p < 100000001, a = MultiplicativeOrder[3, p]; If[0 < a < 101 && t[[a]] == 0, t[[a]] = p; Print[{a, p}]];  p = NextPrime@ p]; t (* Robert G. Wilson v, Oct 13 2014 *)

Extensions

More terms from Robert G. Wilson v, Dec 11 2013

A003060 Smallest number with reciprocal of period length n in decimal (base 10).

Original entry on oeis.org

1, 3, 11, 27, 101, 41, 7, 239, 73, 81, 451, 21649, 707, 53, 2629, 31, 17, 2071723, 19, 1111111111111111111, 3541, 43, 23, 11111111111111111111111, 511, 21401, 583, 243, 29, 3191, 211, 2791, 353, 67, 103, 71, 1919, 2028119, 909090909090909091
Offset: 0

Views

Author

Keywords

Comments

For n > 0, a(n) is the least divisor d > 1 of 10^n - 1 such that the multiplicative order of 10 mod d is n. For prime n > 3, a(n) = A007138(n). - T. D. Noe, Aug 07 2007
For n > 1, a(n) is the smallest positive d such that d divides 10^n - 1 and does not divide any of 10^k - 1 for 0 < k < n. - Maciej Ireneusz Wilczynski, Sep 06 2012, corrected by M. F. Hasler, Jun 28 2022. (For n = 1, d = 1 divides 10^n - 1 and does not divide any 10^k - 1 with 0 < k < n, but a(1) = 3 > 1.)

References

  • J. Brillhart et al., Factorizations of b^n +- 1. Contemporary Mathematics, Vol. 22, Amer. Math. Soc., Providence, RI, 2nd edition, 1985; and later supplements.
  • "Cycle lengths of reciprocals", Popular Computing (Calabasas, CA), Vol. 1 (No. 4, Jul 1973), pp. 12-14.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Smallest primitive divisors of b^n-1: A212953 (b=2), A218356 (b=3), A218357 (b=5), A218358 (b=7), this sequence (b=10), A218359 (b=11), A218360 (b=13), A218361 (b=17), A218362 (b=19), A218363 (b=23), A218364 (b=29).

Programs

  • Mathematica
    a[n_] := First[ Select[ Divisors[10^n - 1], MultiplicativeOrder[10, #] == n &, 1]]; a[0] = 1; a[1] = 3; Table[a[n], {n, 0, 38}] (* Jean-François Alcover, Jul 13 2012, after T. D. Noe *)
  • PARI
    apply( {A003060(n)=!fordiv(10^n-!!n, d, d>1 && znorder(Mod(10,d))==n && return(d))}, [0..50]) \\ M. F. Hasler, Jun 28 2022

Extensions

Comment corrected by T. D. Noe, Apr 15 2010
More terms from T. D. Noe, Apr 15 2010
b-file truncated at uncertain term a(439) by Max Alekseyev, Apr 30 2022

A085028 Number of prime factors of cyclotomic(n,3), which is A019321(n), the value of the n-th cyclotomic polynomial evaluated at x=3.

Original entry on oeis.org

1, 2, 1, 2, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 3, 2, 2, 2, 2, 1, 2, 2, 1, 2, 1, 3, 2, 3, 2, 3, 2, 1, 3, 2, 1, 2, 2, 4, 1, 3, 3, 2, 2, 3, 1, 4, 3, 5, 2, 2, 2, 3, 2, 3, 2, 3, 3, 2, 1, 2, 2, 1, 2, 3, 2, 3, 2, 2, 1, 1, 1, 4, 3, 3, 2, 3, 4, 3, 2, 3, 2, 4, 2, 2, 1, 3, 3, 3, 2, 2, 2, 2, 3, 2, 2, 3, 2, 2, 4
Offset: 1

Views

Author

T. D. Noe, Jun 19 2003

Keywords

Comments

The Mobius transform of this sequence yields A057958, number of prime factors of 3^n-1.

References

Crossrefs

omega(Phi(n,x)): A085021 (x=2), this sequence (x=3), A085029 (x=4), A085030 (x=5), A085031 (x=6), A085032 (x=7), A085033 (x=8), A085034 (x=9), A085035 (x=10).

Programs

  • Mathematica
    Table[Plus@@Transpose[FactorInteger[Cyclotomic[n, 3]]][[2]], {n, 1, 100}]

A213224 Minimal order A(n,k) of degree-n irreducible polynomials over GF(prime(k)); square array A(n,k), n>=1, k>=1, read by antidiagonals.

Original entry on oeis.org

1, 1, 3, 1, 4, 7, 1, 3, 13, 5, 1, 4, 31, 5, 31, 1, 3, 9, 13, 11, 9, 1, 7, 7, 5, 11, 7, 127, 1, 3, 9, 16, 2801, 7, 1093, 17, 1, 4, 307, 5, 25, 36, 19531, 32, 73, 1, 3, 27, 5, 30941, 9, 29, 32, 757, 11, 1, 3, 7, 16, 88741, 63, 43, 64, 19, 44, 23
Offset: 1

Views

Author

Alois P. Heinz, Jun 06 2012

Keywords

Comments

Maximal order of degree-n irreducible polynomials over GF(prime(k)) is prime(k)^n-1 and thus A(n,k) < prime(k)^n.

Examples

			A(4,1) = 5: The degree-4 irreducible polynomials p over GF(prime(1)) = GF(2) are 1+x+x^2+x^3+x^4, 1+x+x^4, 1+x^3+x^4. Their orders (i.e., the smallest integer e for which p divides x^e+1) are 5, 15, 15, and the minimal order is 5. (1+x+x^2+x^3+x^4) * (1+x) == x^5+1 (mod 2).
Square array A(n,k) begins:
    1,    1,     1,    1,   1,       1,        1,   1, ...
    3,    4,     3,    4,   3,       7,        3,   4, ...
    7,   13,    31,    9,   7,       9,      307,  27, ...
    5,    5,    13,    5,  16,       5,        5,  16, ...
   31,   11,    11, 2801,  25,   30941,    88741, 151, ...
    9,    7,     7,   36,   9,      63,        7,   7, ...
  127, 1093, 19531,   29,  43, 5229043, 25646167, 701, ...
   17,   32,    32,   64,  32,      32,      128,  17, ...
		

Crossrefs

Columns k=1-10 are first columns of: A059912, A212906, A212485, A212486, A218336, A218337, A218338, A218339, A218340, A218341.
Cf. A212737 (all orders).

Programs

  • Maple
    with(numtheory):
    M:= proc(n, i) option remember;
          divisors(ithprime(i)^n-1) minus U(n-1, i)
        end:
    U:= proc(n, i) option remember;
          `if`(n=0, {}, M(n, i) union U(n-1, i))
        end:
    A:= (n, k)-> min(M(n, k)[]):
    seq(seq(A(n, d+1-n), n=1..d), d=1..14);
  • Mathematica
    M[n_, i_] := M[n, i] = Divisors[Prime[i]^n - 1] ~Complement~ U[n-1, i]; U[n_, i_] := U[n, i] = If[n == 0, {}, M[n, i] ~Union~ U[n-1, i]]; A[n_, k_] := Min[M[n, k]]; Table[Table[A[n, d+1-n], {n, 1, d}], {d, 1, 14}] // Flatten (* Jean-François Alcover, Dec 13 2013, translated from Maple *)

Formula

A(n,k) = min(M(n,k)) with M(n,k) = {d : d|(prime(k)^n-1)} \ U(n-1,k) and U(n,k) = M(n,k) union U(n-1,k) for n>0, U(0,k) = {}.

A212906 Triangle T(n,k) of orders of degree-n irreducible polynomials over GF(3) listed in ascending order.

Original entry on oeis.org

1, 2, 4, 8, 13, 26, 5, 10, 16, 20, 40, 80, 11, 22, 121, 242, 7, 14, 28, 52, 56, 91, 104, 182, 364, 728, 1093, 2186, 32, 41, 82, 160, 164, 205, 328, 410, 656, 820, 1312, 1640, 3280, 6560, 757, 1514, 9841, 19682, 44, 61, 88, 122, 244, 484, 488, 671, 968, 1342
Offset: 1

Views

Author

Boris Putievskiy, May 29 2012

Keywords

Comments

The elements m of row n, are also solutions to the equation: multiplicative order of 3 mod m = n, with gcd(m,3) = 1, cf. A053446.

Examples

			Triangle T(n,k) begins:
1,   2;
4,   8;
13, 26;
5,  10,  16,  20, 40, 80;
11, 22, 121, 242;
7,  14,  28,  52, 56, 91, 104, 182, 364, 728;
		

References

  • R. Lidl and H. Niederreiter, Finite Fields, 2nd ed., Cambridge Univ. Press, 1997, Table C, pp. 555-557.
  • V. I. Arnol'd, Topology and statistics of formulas of arithmetics, Uspekhi Mat. Nauk, 58:4(352) (2003), 3-28

Crossrefs

Column k=2 of A212737.
Column k=1 gives: A218356.

Programs

  • Maple
    with(numtheory):
    M:= proc(n) option remember;
          divisors(3^n-1) minus U(n-1)
        end:
    U:= proc(n) option remember;
          `if`(n=0, {}, M(n) union U(n-1))
        end:
    T:= n-> sort([M(n)[]])[]:
    seq(T(n), n=1..15);  # Alois P. Heinz, Jun 02 2012
  • Mathematica
    M[n_] := M[n] = Divisors[3^n - 1] ~Complement~ U[n - 1];
    U[n_] := U[n] = If[n == 0, {}, M[n] ~Union~ U[n - 1]];
    T[n_] := Sort[M[n]]; Array[T, 15] // Flatten (* Jean-François Alcover, Jun 10 2018, after Alois P. Heinz *)

Formula

T(n,k) = k-th smallest element of M(n) with M(n) = {d : d | (3^n-1)} \ (M(1) U M(2) U ... U M(i-1)) for n>1, M(1) = {1,2}.
|M(n)| = Sum_{d|n} mu(n/d)*tau(3^d-1) = A059885(n).
Showing 1-6 of 6 results.