cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A365528 a(n) = Sum_{k=0..floor(n/5)} Stirling2(n,5*k).

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 15, 140, 1050, 6951, 42526, 246785, 1381105, 7547826, 40827787, 223429571, 1289945660, 8411093621, 66070626548, 624900235273, 6667243384356, 74991482322466, 854627237256694, 9698297591786441, 108934902927646609
Offset: 0

Views

Author

Seiichi Manyama, Sep 08 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[StirlingS2[n, 5*k], {k, 0, Floor[n/5]}]; Array[a, 25, 0] (* Amiram Eldar, Sep 13 2023 *)
  • PARI
    a(n) = sum(k=0, n\5, stirling(n, 5*k, 2));

Formula

Let A(0)=1, B(0)=0, C(0)=0, D(0)=0 and E(0)=0. Let B(n+1) = Sum_{k=0..n} binomial(n,k)*A(k), C(n+1) = Sum_{k=0..n} binomial(n,k)*B(k), D(n+1) = Sum_{k=0..n} binomial(n,k)*C(k), E(n+1) = Sum_{k=0..n} binomial(n,k)*D(k) and A(n+1) = Sum_{k=0..n} binomial(n,k)*E(k). a(n) = A(n), A365529(n) = B(n), A365530(n) = C(n), A365531(n) = D(n) and A365532(n) = E(n).
G.f.: Sum_{k>=0} x^(5*k) / Product_{j=1..5*k} (1-j*x).
a(n) ~ n^n / (5 * (LambertW(n))^n * exp(n+1-n/LambertW(n)) * sqrt(1+LambertW(n))). - Vaclav Kotesovec, Jun 10 2025

A365525 a(n) = Sum_{k=0..floor(n/4)} Stirling2(n,4*k).

Original entry on oeis.org

1, 0, 0, 0, 1, 10, 65, 350, 1702, 7806, 34855, 157630, 770529, 4432220, 31307432, 259090260, 2316320073, 21172354778, 193091210857, 1744478148866, 15627203762926, 139526376391986, 1251976261264071, 11417796498945894, 107280845105151601
Offset: 0

Views

Author

Seiichi Manyama, Sep 08 2023

Keywords

Crossrefs

Programs

  • Maple
    f:= proc(n) local k; add(Stirling2(n,4*k),k=0..n/4) end proc:
    map(f, [$0..30]); # Robert Israel, Sep 11 2024
  • Mathematica
    a[n_] := Sum[StirlingS2[n, 4*k], {k, 0, Floor[n/4]}]; Array[a, 25, 0] (* Amiram Eldar, Sep 11 2023 *)
  • PARI
    a(n) = sum(k=0, n\4, stirling(n, 4*k, 2));
    
  • Python
    from sympy.functions.combinatorial.numbers import stirling
    def A365525(n): return sum(stirling(n,k<<2) for k in range((n>>2)+1)) # Chai Wah Wu, Sep 08 2023

Formula

Let A(0)=1, B(0)=0, C(0)=0 and D(0)=0. Let B(n+1) = Sum_{k=0..n} binomial(n,k)*A(k), C(n+1) = Sum_{k=0..n} binomial(n,k)*B(k), D(n+1) = Sum_{k=0..n} binomial(n,k)*C(k) and A(n+1) = Sum_{k=0..n} binomial(n,k)*D(k). a(n) = A(n), A365526(n) = B(n), A365527(n) = C(n) and A099948(n) = D(n).
G.f.: Sum_{k>=0} x^(4*k) / Product_{j=1..4*k} (1-j*x).
a(n) ~ n^n / (4 * (LambertW(n))^n * exp(n+1-n/LambertW(n)) * sqrt(1+LambertW(n))). - Vaclav Kotesovec, Jun 10 2025

A357293 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) = Sum_{j=0..n} Stirling2(n,k*j).

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 0, 2, 0, 1, 0, 1, 5, 0, 1, 0, 0, 3, 15, 0, 1, 0, 0, 1, 8, 52, 0, 1, 0, 0, 0, 6, 25, 203, 0, 1, 0, 0, 0, 1, 25, 97, 877, 0, 1, 0, 0, 0, 0, 10, 91, 434, 4140, 0, 1, 0, 0, 0, 0, 1, 65, 322, 2095, 21147, 0, 1, 0, 0, 0, 0, 0, 15, 350, 1232, 10707, 115975, 0, 1, 0, 0, 0, 0, 0, 1, 140, 1702, 5672, 58194, 678570, 0
Offset: 0

Views

Author

Seiichi Manyama, Oct 17 2022

Keywords

Examples

			Square array begins:
  1,   1,  1,  1,  1,  1, 1, ...
  0,   1,  0,  0,  0,  0, 0, ...
  0,   2,  1,  0,  0,  0, 0, ...
  0,   5,  3,  1,  0,  0, 0, ...
  0,  15,  8,  6,  1,  0, 0, ...
  0,  52, 25, 25, 10,  1, 0, ...
  0, 203, 97, 91, 65, 15, 1, ...
		

Crossrefs

Columns k=0-3 give: A000007, A000110, A024430, A143815.
Cf. A357119.

Programs

  • PARI
    T(n, k) = sum(j=0, n, stirling(n, k*j, 2));
    
  • PARI
    T(n, k) = if(k==0, 0^n, n!*polcoef(sum(j=0, n\k, (exp(x+x*O(x^n))-1)^(k*j)/(k*j)!), n));
    
  • PARI
    Bell_poly(n, x) = exp(-x)*suminf(k=0, k^n*x^k/k!);
    T(n, k) = if(k==0, 0^n, my(w=exp(2*Pi*I/k)); round(sum(j=0, k-1, Bell_poly(n, w^j)))/k);

Formula

For k > 0, e.g.f. of column k: Sum_{j>=0} (exp(x)-1)^(k*j)/(k*j)!.
For k > 0, T(n,k) = ( Sum_{j=0..k-1} Bell_n(w^j) )/k, where Bell_n(x) is n-th Bell polynomial and w = exp(2*Pi*i/k).

A357782 a(n) = Sum_{k=0..floor(n/3)} 2^k * Stirling2(n,3*k).

Original entry on oeis.org

1, 0, 0, 2, 12, 50, 184, 686, 2996, 16642, 110328, 784190, 5645876, 40685762, 296458344, 2226254766, 17564381332, 147289101090, 1312394060536, 12305546886398, 119906479624084, 1202273551045474, 12341175064817576, 129582557972751918, 1394497073432776756
Offset: 0

Views

Author

Seiichi Manyama, Oct 13 2022

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\3, 2^k*stirling(n, 3*k, 2));
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N\3, 2^k*(exp(x)-1)^(3*k)/(3*k)!)))
    
  • PARI
    Bell_poly(n, x) = exp(-x)*suminf(k=0, k^n*x^k/k!);
    a(n) = my(v=2^(1/3), w=(-1+sqrt(3)*I)/2); round(Bell_poly(n, v)+Bell_poly(n, v*w)+Bell_poly(n, v*w^2))/3;

Formula

Let A(0)=1, B(0)=0 and C(0)=0. Let B(n+1) = Sum_{k=0..n} binomial(n,k)*A(k), C(n+1) = Sum_{k=0..n} binomial(n,k)*B(k) and A(n+1) = 2 * Sum_{k=0..n} binomial(n,k)*C(k). a(n) = A(n), A357783(n) = B(n) and A357784(n) = C(n).
Let w = exp(2*Pi*i/3) and set F(x) = (exp(x) + exp(w*x) + exp(w^2*x))/3 = 1 + x^3/3! + x^6/6! + ... . Then the e.g.f. for the sequence is F(2^(1/3) * (exp(x)-1)).
a(n) = ( Bell_n(2^(1/3)) + Bell_n(2^(1/3)*w) + Bell_n(2^(1/3)*w^2) )/3, where Bell_n(x) is n-th Bell polynomial.

A384836 a(n) = Sum_{k=0..floor(n/4)} |Stirling1(n,4*k)|.

Original entry on oeis.org

1, 0, 0, 0, 1, 10, 85, 735, 6770, 67320, 724550, 8427650, 105615500, 1420941600, 20448793300, 313670857500, 5111631733000, 88224807112000, 1608190674259000, 30879323250633000, 623074177992110000, 13182400475167560000, 291842125111122170000, 6748135840840046510000
Offset: 0

Views

Author

Vaclav Kotesovec, Jun 10 2025

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Abs[StirlingS1[n, 4*k]], {k, 0, Floor[n/4]}], {n, 0, 30}]
  • PARI
    a(n) = sum(k=0, n\4, abs(stirling(n, 4*k, 1))); \\ Michel Marcus, Jun 10 2025

Formula

a(n) ~ n!/4.

A384837 a(n) = Sum_{k=0..floor(n/5)} |Stirling1(n,5*k)|.

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 15, 175, 1960, 22449, 269326, 3416985, 45997655, 657262606, 9959178229, 159758917956, 2707741441460, 48389066401764, 909877831207125, 17965423056654249, 371766710374672096, 8047954162682335066, 181941000229690525197, 4288430328840863166236, 105226297616943093770399
Offset: 0

Views

Author

Vaclav Kotesovec, Jun 10 2025

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Abs[StirlingS1[n, 5*k]], {k, 0, Floor[n/5]}], {n, 0, 30}]
  • PARI
    a(n) = sum(k=0, n\5, abs(stirling(n, 5*k, 1))); \\ Michel Marcus, Jun 10 2025

Formula

a(n) ~ n!/5.
Previous Showing 11-16 of 16 results.