A023875
Expansion of Product_{k>=1} (1 - x^k)^(-k^6).
Original entry on oeis.org
1, 1, 65, 794, 6970, 69251, 689896, 6309849, 55654858, 483526120, 4104495070, 33968248260, 275366110929, 2192975727284, 17169583920204, 132264358228507, 1003715206329332, 7511468689508580, 55479733165442038, 404709688656248024, 2917717129031507178
Offset: 0
- Seiichi Manyama, Table of n, a(n) for n = 0..1771 (first 451 terms from Alois P. Heinz)
- G. Almkvist, Asymptotic formulas and generalized Dedekind sums, Exper. Math., 7 (No. 4, 1998), pp. 343-359.
- Vaclav Kotesovec, Graph - The asymptotic ratio for 10000 terms
- Vaclav Kotesovec, A method of finding the asymptotics of q-series based on the convolution of generating functions, arXiv:1509.08708 [math.CO], Sep 30 2015, p. 21.
-
m:=30; R:=PowerSeriesRing(Rationals(), m); Coefficients(R! ( (&*[1/(1-x^k)^k^6: k in [1..m]]) )); // G. C. Greubel, Oct 31 2018
-
with(numtheory):
a:= proc(n) option remember; `if`(n=0, 1,
add(add(d*d^6, d=divisors(j)) *a(n-j), j=1..n)/n)
end:
seq(a(n), n=0..25); # Alois P. Heinz, Nov 02 2012
-
max = 20; Series[ Product[1/(1 - x^k)^k^6, {k, 1, max}], {x, 0, max}] // CoefficientList[#, x] & (* Jean-François Alcover, Mar 05 2013 *)
-
m=30; x='x+O('x^m); Vec(prod(k=1, m, 1/(1-x^k)^k^6)) \\ G. C. Greubel, Oct 31 2018
A023876
G.f.: Product_{k>=1} (1 - x^k)^(-k^7).
Original entry on oeis.org
1, 1, 129, 2316, 26956, 385017, 5512443, 70223666, 866470849, 10628564312, 126832407040, 1469751196093, 16694372607012, 186350644088784, 2042610304126944, 22007441766651756, 233482509248479425, 2441727926157182541, 25187101530316996950, 256456174925807404269
Offset: 0
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- G. Almkvist, Asymptotic formulas and generalized Dedekind sums, Exper. Math., 7 (No. 4, 1998), pp. 343-359.
- Vaclav Kotesovec, Graph - The asymptotic ratio for 10000 terms
- Vaclav Kotesovec, A method of finding the asymptotics of q-series based on the convolution of generating functions, arXiv:1509.08708 [math.CO], Sep 30 2015, p. 21.
-
m:=20; R:=PowerSeriesRing(Rationals(), m); Coefficients(R! ( (&*[1/(1-x^k)^k^7: k in [1..m]]) )); // G. C. Greubel, Oct 31 2018
-
with(numtheory):
a:= proc(n) option remember; `if`(n=0, 1,
add(add(d*d^7, d=divisors(j)) *a(n-j), j=1..n)/n)
end:
seq(a(n), n=0..20); # Alois P. Heinz, Nov 02 2012
-
max = 19; Series[ Product[1/(1 - x^k)^k^7, {k, 1, max}], {x, 0, max}] // CoefficientList[#, x] & (* Jean-François Alcover, Mar 05 2013 *)
-
m=20; x='x+O('x^m); Vec(prod(k=1, m, 1/(1-x^k)^k^7)) \\ G. C. Greubel, Oct 31 2018
A023877
Expansion of Product_{k>=1} (1 - x^k)^(-k^8).
Original entry on oeis.org
1, 1, 257, 6818, 105250, 2175491, 44988020, 796565173, 13803604854, 240522266760, 4044067171130, 65769795259820, 1051279656603367, 16517653032316394, 254354069377336990, 3847172021760617755, 57300325471166205776, 840900188345961238222, 12164188625099191500782
Offset: 0
- Seiichi Manyama, Table of n, a(n) for n = 0..1170 (first 301 terms from Alois P. Heinz)
- G. Almkvist, Asymptotic formulas and generalized Dedekind sums, Exper. Math., 7 (No. 4, 1998), pp. 343-359.
- Vaclav Kotesovec, A method of finding the asymptotics of q-series based on the convolution of generating functions, arXiv:1509.08708 [math.CO], Sep 30 2015, p. 21.
-
m:=20; R:=PowerSeriesRing(Rationals(), m); Coefficients(R! ( (&*[1/(1-x^k)^k^8: k in [1..m]]) )); // G. C. Greubel, Oct 31 2018
-
with(numtheory):
a:= proc(n) option remember; `if`(n=0, 1,
add(add(d*d^8, d=divisors(j)) *a(n-j), j=1..n)/n)
end:
seq(a(n), n=0..20); # Alois P. Heinz, Nov 02 2012
-
max = 18; Series[ Product[1/(1 - x^k)^k^8, {k, 1, max}], {x, 0, max}] // CoefficientList[#, x] & (* Jean-François Alcover, Mar 05 2013 *)
-
m=20; x='x+O('x^m); Vec(prod(k=1, m, 1/(1-x^k)^k^8)) \\ G. C. Greubel, Oct 31 2018
A284993
Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of Product_{j>=1} 1/(1+x^j)^(j^k) in powers of x.
Original entry on oeis.org
1, 1, -1, 1, -1, 0, 1, -1, -1, -1, 1, -1, -3, -2, 1, 1, -1, -7, -6, 1, -1, 1, -1, -15, -20, 0, 0, 1, 1, -1, -31, -66, -8, 11, 4, -1, 1, -1, -63, -212, -54, 99, 42, 2, 2, 1, -1, -127, -666, -284, 725, 455, 63, 8, -2, 1, -1, -255, -2060, -1350, 4935, 4580, 958, 73
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, ...
-1, -1, -1, -1, -1, -1, ...
0, -1, -3, -7, -15, -31, ...
-1, -2, -6, -20, -66, -212, ...
1, 1, 0, -8, -54, -284, ...
A294296
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of e.g.f.: exp(Sum_{j>=1} sigma_k(j) * x^j).
Original entry on oeis.org
1, 1, 1, 1, 1, 5, 1, 1, 7, 25, 1, 1, 11, 43, 193, 1, 1, 19, 91, 409, 1481, 1, 1, 35, 223, 1105, 3841, 16021, 1, 1, 67, 595, 3505, 13841, 50431, 167665, 1, 1, 131, 1663, 12193, 60841, 230731, 648187, 2220065, 1, 1, 259, 4771, 44689, 297761, 1340851, 3955771
Offset: 0
Square array A(n,k) begins:
1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, ...
5, 7, 11, 19, 35, ...
25, 43, 91, 223, 595, ...
193, 409, 1105, 3505, 12193, ...
1481, 3841, 13841, 60841, 297761, ...
A294589
Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of Product_{j>=1} 1/(1 - j*x^j)^(j^k).
Original entry on oeis.org
1, 1, 1, 1, 1, 3, 1, 1, 5, 6, 1, 1, 9, 14, 14, 1, 1, 17, 36, 42, 25, 1, 1, 33, 98, 140, 103, 56, 1, 1, 65, 276, 498, 481, 289, 97, 1, 1, 129, 794, 1844, 2419, 1774, 690, 198, 1, 1, 257, 2316, 7002, 12745, 12173, 5925, 1771, 354, 1, 1, 513, 6818, 27020, 69283, 89706, 56974, 20076, 4206, 672, 1
Offset: 0
Square array begins:
1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, ...
3, 5, 9, 17, 33, ...
6, 14, 36, 98, 276, ...
14, 42, 140, 498, 1844, ...
A319361
a(n) = [x^n] exp(Sum_{k>=1} sigma_n(k)*x^k/k).
Original entry on oeis.org
1, 1, 3, 14, 136, 2411, 88903, 6309849, 866470849, 240522266760, 132000248840652, 141226630324344532, 306101744973083495408, 1327520858367342045830198, 11328405846086223895036194126, 196814026990537767059856457640779, 6894163531963490274906095710739747873
Offset: 0
-
Table[SeriesCoefficient[Exp[Sum[DivisorSigma[n, k] x^k/k, {k, 1, n}]], {x, 0, n}], {n, 0, 16}]
Table[SeriesCoefficient[Product[1/(1 - x^k)^(k^(n - 1)), {k, 1, n}], {x, 0, n}], {n, 0, 16}]
A320251
Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of 1/(1 - Sum_{j>=1} j^k*x^j).
Original entry on oeis.org
1, 1, 1, 1, 1, 2, 1, 1, 3, 4, 1, 1, 5, 8, 8, 1, 1, 9, 18, 21, 16, 1, 1, 17, 44, 63, 55, 32, 1, 1, 33, 114, 207, 221, 144, 64, 1, 1, 65, 308, 723, 991, 776, 377, 128, 1, 1, 129, 858, 2631, 4805, 4752, 2725, 987, 256, 1, 1, 257, 2444, 9843, 24655, 31880, 22769, 9569, 2584, 512
Offset: 0
G.f. of column k: A_k(x) = 1 + x + (2^k + 1)*x^2 + (2^(k + 1) + 3^k + 1)*x^3 + (3*2^k + 2^(2*k + 1) + 2*3^k + 1)*x^4 + ...
Square array begins:
1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, ...
2, 3, 5, 9, 17, 33, ...
4, 8, 18, 44, 114, 308, ...
8, 21, 63, 207, 723, 2631, ...
16, 55, 221, 991, 4805, 24655, ...
-
Table[Function[k, SeriesCoefficient[1/(1 - Sum[i^k x^i, {i, 1, n}]), {x, 0, n}]][j - n], {j, 0, 10}, {n, 0, j}] // Flatten
Table[Function[k, SeriesCoefficient[1/(1 - PolyLog[-k, x]), {x, 0, n}]][j - n], {j, 0, 10}, {n, 0, j}] // Flatten
Comments