A005946
Number of n-step mappings with 5 inputs.
Original entry on oeis.org
1, 52, 358, 1304, 3455, 7556, 14532, 25488, 41709, 64660, 95986, 137512, 191243, 259364, 344240, 448416, 574617, 725748, 904894, 1115320, 1360471, 1643972, 1969628, 2341424, 2763525, 3240276, 3776202, 4376008, 5044579, 5786980, 6608456, 7514432, 8510513, 9602484
Offset: 1
- T. Hogg and B. A. Huberman, Attractors on finite sets: the dissipative dynamics of computing structures, Phys. Review A 32 (1985), 2338-2346.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Alois P. Heinz, Table of n, a(n) for n = 1..10000
- T. Hogg and B. A. Huberman, Attractors on finite sets: the dissipative dynamics of computing structures, Phys. Review A 32 (1985), 2338-2346. (Annotated scanned copy)
- B. A. Huberman, T. H. Hogg, & N. J. A. Sloane, Correspondence, 1985
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
-
b:= proc(n, k) option remember; `if`(k=0, `if`(n<2, 1, 0),
add(Stirling2(n, j)*b(j, k-1), j=0..n))
end:
a:= n-> b(5, n):
seq(a(n), n=1..36); # Alois P. Heinz, Aug 23 2021
-
LinearRecurrence[{5, -10, 10, -5, 1}, {1, 52, 358, 1304, 3455}, 36] (* Jean-François Alcover, May 20 2022 *)
A209631
Square array A(n,k), n>=0, k>=0, read by antidiagonals, A(n,k) = exponential transform applied n times to identity function, evaluated at k.
Original entry on oeis.org
0, 1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 10, 4, 1, 1, 5, 20, 41, 5, 1, 1, 6, 33, 127, 196, 6, 1, 1, 7, 49, 280, 967, 1057, 7, 1, 1, 8, 68, 518, 2883, 8549, 6322, 8, 1, 1, 9, 90, 859, 6689, 34817, 85829, 41393, 9, 1, 1, 10, 115, 1321, 13310, 101841, 481477
Offset: 0
n\k [0][1][2] [3] [4] [5] [6]
[0] 0, 1, 2, 3, 4, 5, 6
[1] 1, 1, 3, 10, 41, 196, 1057 [A000248]
[2] 1, 1, 4, 20, 127, 967, 8549 [A007550]
[3] 1, 1, 5, 33, 280, 2883, 34817
[4] 1, 1, 6, 49, 518, 6689, 101841
[5] 1, 1, 7, 68, 859, 13310, 243946
[6] 1, 1, 8, 90, 1321, 23851, 510502
column3(n) = (3*n^2 + 11*n + 6)/2!
column4(n) = (18*n^3 + 93*n^2 + 111*n + 24)/3!
column5(n) = (180*n^4 + 1180*n^3 + 2160*n^2 + 1064*n + 120)/4!
column6(n) = (2700*n^5+21225*n^4+51850*n^3+41835*n^2+8510*n+720)/5!
-
# Implementation after Alois P. Heinz.
exptr := proc(p) local g; g := proc(n) option remember; local k;
`if`(n=0, 1, add(binomial(n-1, k-1)*p(k)*g(n-k), k=1..n)) end end:
A209631 := (n,k) -> (exptr@@n)(m->m)(k):
seq(lprint(seq(A209631(n,k), k=0..6)), n=0..6);
-
exptr[p_] := Module[{g}, g[n_] := g[n] = Module[{k}, If[n == 0, 1, Sum[Binomial[n-1, k-1]*p[k]*g[n-k], {k, 1, n}]]]; g]; A209631[n_, k_] := Nest[exptr, Identity, n][k]; Table[A209631[n-k , k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Feb 27 2014, after Alois P. Heinz *)
A210638
Iterated Rényi numbers. Square array A(n,k), n>=0, k>=0, read by antidiagonals, A(n,k) = exponential transform applied n times to the constant function -1, evaluated at k.
Original entry on oeis.org
-1, 1, -1, 1, -1, -1, 1, -1, 0, -1, 1, -1, 1, 1, -1, 1, -1, 2, 0, 1, -1, 1, -1, 3, -4, -2, -2, -1, 1, -1, 4, -11, 8, 2, -9, -1, 1, -1, 5, -21, 49, -14, 9, -9, -1, 1, -1, 6, -34, 139, -255, 13, -24, 50, -1, 1, -1, 7, -50, 296, -1106, 1508, 45, -80, 267, -1, 1
Offset: 0
n\k [0] [1] [2] [3] [4] [5] [6]
[0] -1 -1 -1 -1 -1 -1 -1
[1] 1 -1 0 1 1 -2 -9 [A000587]
[2] 1 -1 1 0 -2 2 9
[3] 1 -1 2 -4 8 -14 13
[4] 1 -1 3 -11 49 -255 1508
[5] 1 -1 4 -21 139 -1106 10244
[6] 1 -1 5 -34 296 -3132 38916
column3(n) = (-2+7*n-3*n^2)/2 [A115067]
column4(n) = (-2+21*n-23*n^2+6*n^3)/2
column5(n) = (-6+199*n-405*n^2+245*n^3-45*n^4)/6
column6(n) = (-24+2866*n-9213*n^2+9470*n^3-3855*n^4+540*n^5 )/24
- R. E. Beard, On the coefficients in the expansion of e^e^t and e^e^(-t), J. Inst. Actuar. 76 (1950), 152-163.
- Alfréd Rényi, New methods and results in combinatorial analysis. (Paper is in Hungarian.) I. MTA III Oszt. Ivozl., 16 (1966), 77-105.
- E. T. Bell, The iterated exponential integers, Ann. Math. 39(3) (1938), 539-557.
- Antal E. Fekete, Apropos Bell and Stirling Numbers, Crux Mathematicorum with Mathematical Mayhem, Canadian Mathematical Society, Volume 25 Number 5 (May 1999), 274-281.
- Peter Luschny, Set partitions and Bell numbers
- V. R. Rao Uppuluri and J. A. Carpenter, Numbers generated by the function exp(1-e^x), Fib. Quart. 7 (1969), 437-448.
-
exptr := proc(p) local g; g := proc(n) option remember; local k;
`if`(n=0, 1, add(binomial(n-1, k-1)*p(k)*g(n-k), k=1..n)) end end:
A210638 := (n, k) -> (exptr@@n)(-1)(k):
seq(lprint(seq(A210638(n, k), k=0..6)), n=0..6);
-
exptr[p_] := Module[{g}, g[n_] := g[n] = If[n==0, 1, Sum[Binomial[n-1, k-1] p[k] g[n-k], {k, 1, n}]]; g];
A[n_, k_] := Nest[exptr, -1&, n][k];
Table[A[n-k, k], {n, 0, 10}, {k, 0, n}] (* Jean-François Alcover, Jun 29 2019 *)
A381931
Triangular array T(n, k) read by rows: denominators of the coefficients for the iterated exponential F^{r}(x) = x + Sum_{n>=1} x^(n+1)*Sum_{k=1..n} r^(n+1-k)*A381932(n, k)/T(n, k) with F^{1}(x) = exp(x)-1 and F^{2}(x) = exp(exp(x)-1)-1.
Original entry on oeis.org
2, 4, 12, 8, 48, 48, 16, 144, 24, 180, 32, 1152, 1728, 5760, 8640, 64, 640, 3456, 5760, 17280, 6720, 128, 7680, 34560, 1152, 34560, 32256, 241920, 256, 26880, 82944, 414720, 41472, 580608, 107520, 1451520, 512, 430080, 645120, 622080, 4147200, 6967296, 21772800, 87091200, 43545600
Offset: 1
Triangle T(n, k) begins:
[1] 2;
[2] 4, 12;
[3] 8, 48, 48;
[4] 16, 144, 24, 180;
[5] 32, 1152, 1728, 5760, 8640;
[6] 64, 640, 3456, 5760, 17280, 6720;
[7] 128, 7680, 34560, 1152, 34560, 32256, 241920;
[8] 256, 26880, 82944, 414720, 41472, 580608, 107520, 1451520;
[9] 512, 430080, 645120, 622080, 4147200, 6967296, 21772800, 87091200, 43545600;
.
F^{r}(x) = x
+ x^2*1/2*r
+ x^3*(1/4*r^2 - 1/12*r)
+ x^4*(1/8*r^3 - 5/48*r^2 + 1/48*r)
+ x^5*(1/16*r^4 - 13/144*r^3 + 1/24*r^2 - 1/180*r)
+ x^6*(1/32*r^5 - 77/1152*r^4 + 89/1728*r^3 - 91/5760*r^2 + 11/8640*r)
+ ... .
-
c(k, n) = {my(f=x); for(m=1, k, f=subst(f, x, exp(x)-1)); polcoeff(f+O(x^(n+1)), n)}
row(n) = my(p=polinterpolate(vector(2*(n+1), k, k-1), vector(2*(n+1), k, c(k-1, n+1)))); vector(n, k, denominator(polcoeff(p, n-k+1)));
A381932
Triangular array T(n, k) read by rows: denominators of the coefficients for the iterated exponential F^{r}(x) = x + Sum_{n>=1} x^(n+1)*Sum_{k=1..n} r^(n+1-k)*T(n, k)/A381931(n, k) with F^{1}(x) = exp(x)-1 and F^{2}(x) = exp(exp(x)-1)-1.
Original entry on oeis.org
1, 1, -1, 1, -5, 1, 1, -13, 1, -1, 1, -77, 89, -91, 11, 1, -29, 175, -149, 91, -1, 1, -223, 1501, -37, 391, -43, -11, 1, -481, 2821, -13943, 725, -2357, 17, 29, 1, -4609, 16099, -19481, 91313, -55649, 23137, 1727, 493, 1, -4861, 89993, -933293, 399637, -1061231, 2035739, -8189, 4897, -2711
Offset: 1
Triangle T(n, k) begins:
[1] 1;
[2] 1, -1;
[3] 1, -5, 1;
[4] 1, -13, 1, -1;
[5] 1, -77, 89, -91, 11;
[6] 1, -29, 175, -149, 91, -1;
[7] 1, -223, 1501, -37, 391, -43, -11;
[8] 1, -481, 2821, -13943, 725, -2357, 17, 29;
[9] 1, -4609, 16099, -19481, 91313, -55649, 23137, 1727, 493;
.
F^{r}(x) = x
+ x^2*1/2*r
+ x^3*(1/4*r^2 - 1/12*r)
+ x^4*(1/8*r^3 - 5/48*r^2 + 1/48*r)
+ x^5*(1/16*r^4 - 13/144*r^3 + 1/24*r^2 - 1/180*r)
+ x^6*(1/32*r^5 - 77/1152*r^4 + 89/1728*r^3 - 91/5760*r^2 + 11/8640*r)
+ ... .
-
c(k, n) = {my(f=x); for(m=1, k, f=subst(f, x, exp(x)-1)); polcoeff(f+O(x^(n+1)), n)}
row(n) = my(p=polinterpolate(vector(2*(n+1), k, k-1), vector(2*(n+1), k, c(k-1, n+1)))); vector(n, k, numerator(polcoeff(p, n-k+1)));
Comments