cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-25 of 25 results.

A005946 Number of n-step mappings with 5 inputs.

Original entry on oeis.org

1, 52, 358, 1304, 3455, 7556, 14532, 25488, 41709, 64660, 95986, 137512, 191243, 259364, 344240, 448416, 574617, 725748, 904894, 1115320, 1360471, 1643972, 1969628, 2341424, 2763525, 3240276, 3776202, 4376008, 5044579, 5786980, 6608456, 7514432, 8510513, 9602484
Offset: 1

Views

Author

Keywords

Comments

Hogg & Huberman paper has a misprint a(4)=304. - Sean A. Irvine, Oct 11 2016

References

  • T. Hogg and B. A. Huberman, Attractors on finite sets: the dissipative dynamics of computing structures, Phys. Review A 32 (1985), 2338-2346.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Row n=5 of A144150.

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(k=0, `if`(n<2, 1, 0),
          add(Stirling2(n, j)*b(j, k-1), j=0..n))
        end:
    a:= n-> b(5, n):
    seq(a(n), n=1..36);  # Alois P. Heinz, Aug 23 2021
  • Mathematica
    LinearRecurrence[{5, -10, 10, -5, 1}, {1, 52, 358, 1304, 3455}, 36] (* Jean-François Alcover, May 20 2022 *)

Formula

a(n) = h(5,n) where h(n, m) = Sum_{j} (n!/f(j)) * Product_{k=1..n} h(k,m-1)^(j(k)) and the sum runs over all partitions j=(j(1),...,j(n)) of n and f(j) = Product_{k=1..n} j(k)! * (k!)^(j(k)). That is, j satisfies Sum_{k=1..n} k*j(k) = n [From Hogg & Huberman]. - Sean A. Irvine, Oct 11 2016
G.f.: x*(24*x^3+108*x^2+47*x+1)/(1-x)^5. - Alois P. Heinz, Aug 23 2021

Extensions

a(4) corrected and more terms from Sean A. Irvine, Oct 11 2016

A209631 Square array A(n,k), n>=0, k>=0, read by antidiagonals, A(n,k) = exponential transform applied n times to identity function, evaluated at k.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 10, 4, 1, 1, 5, 20, 41, 5, 1, 1, 6, 33, 127, 196, 6, 1, 1, 7, 49, 280, 967, 1057, 7, 1, 1, 8, 68, 518, 2883, 8549, 6322, 8, 1, 1, 9, 90, 859, 6689, 34817, 85829, 41393, 9, 1, 1, 10, 115, 1321, 13310, 101841, 481477
Offset: 0

Views

Author

Peter Luschny, Mar 11 2012

Keywords

Comments

Motivation: The exponential transform applied n times to the constant function 1 evaluated at k was studied by E. T. Bell (see A144150).

Examples

			n\k [0][1][2] [3]   [4]    [5]     [6]
[0]  0, 1, 2,  3,    4,     5,      6
[1]  1, 1, 3, 10,   41,   196,   1057   [A000248]
[2]  1, 1, 4, 20,  127,   967,   8549   [A007550]
[3]  1, 1, 5, 33,  280,  2883,  34817
[4]  1, 1, 6, 49,  518,  6689, 101841
[5]  1, 1, 7, 68,  859, 13310, 243946
[6]  1, 1, 8, 90, 1321, 23851, 510502
column3(n) = (3*n^2 + 11*n + 6)/2!
column4(n) = (18*n^3 + 93*n^2 + 111*n + 24)/3!
column5(n) = (180*n^4 + 1180*n^3 + 2160*n^2 + 1064*n + 120)/4!
column6(n) = (2700*n^5+21225*n^4+51850*n^3+41835*n^2+8510*n+720)/5!
		

Crossrefs

Programs

  • Maple
    # Implementation after Alois P. Heinz.
    exptr := proc(p) local g; g := proc(n) option remember; local k;
    `if`(n=0, 1, add(binomial(n-1, k-1)*p(k)*g(n-k), k=1..n)) end end:
    A209631 := (n,k) -> (exptr@@n)(m->m)(k):
    seq(lprint(seq(A209631(n,k), k=0..6)), n=0..6);
  • Mathematica
    exptr[p_] := Module[{g}, g[n_] := g[n] = Module[{k}, If[n == 0, 1, Sum[Binomial[n-1, k-1]*p[k]*g[n-k], {k, 1, n}]]]; g]; A209631[n_, k_] := Nest[exptr, Identity, n][k]; Table[A209631[n-k , k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Feb 27 2014, after Alois P. Heinz *)

A210638 Iterated Rényi numbers. Square array A(n,k), n>=0, k>=0, read by antidiagonals, A(n,k) = exponential transform applied n times to the constant function -1, evaluated at k.

Original entry on oeis.org

-1, 1, -1, 1, -1, -1, 1, -1, 0, -1, 1, -1, 1, 1, -1, 1, -1, 2, 0, 1, -1, 1, -1, 3, -4, -2, -2, -1, 1, -1, 4, -11, 8, 2, -9, -1, 1, -1, 5, -21, 49, -14, 9, -9, -1, 1, -1, 6, -34, 139, -255, 13, -24, 50, -1, 1, -1, 7, -50, 296, -1106, 1508, 45, -80, 267, -1, 1
Offset: 0

Views

Author

Peter Luschny, Mar 26 2012

Keywords

Comments

Motivation: The exponential transform applied n times to the constant function 1 evaluated at k was studied by E. T. Bell (Iterated Bell numbers, see A144150).

Examples

			n\k [0]  [1] [2]   [3]   [4]     [5]     [6]
[0] -1   -1  -1    -1    -1      -1      -1
[1]  1   -1   0     1     1      -2      -9  [A000587]
[2]  1   -1   1     0    -2       2       9
[3]  1   -1   2    -4     8     -14      13
[4]  1   -1   3   -11    49    -255    1508
[5]  1   -1   4   -21   139   -1106   10244
[6]  1   -1   5   -34   296   -3132   38916
column3(n) = (-2+7*n-3*n^2)/2  [A115067]
column4(n) = (-2+21*n-23*n^2+6*n^3)/2
column5(n) = (-6+199*n-405*n^2+245*n^3-45*n^4)/6
column6(n) = (-24+2866*n-9213*n^2+9470*n^3-3855*n^4+540*n^5 )/24
		

References

  • R. E. Beard, On the coefficients in the expansion of e^e^t and e^e^(-t), J. Inst. Actuar. 76 (1950), 152-163.
  • Alfréd Rényi, New methods and results in combinatorial analysis. (Paper is in Hungarian.) I. MTA III Oszt. Ivozl., 16 (1966), 77-105.

Crossrefs

Programs

  • Maple
    exptr := proc(p) local g; g := proc(n) option remember; local k;
    `if`(n=0, 1, add(binomial(n-1, k-1)*p(k)*g(n-k), k=1..n)) end end:
    A210638 := (n, k) -> (exptr@@n)(-1)(k):
    seq(lprint(seq(A210638(n, k), k=0..6)), n=0..6);
  • Mathematica
    exptr[p_] := Module[{g}, g[n_] := g[n] = If[n==0, 1, Sum[Binomial[n-1, k-1] p[k] g[n-k], {k, 1, n}]]; g];
    A[n_, k_] := Nest[exptr, -1&, n][k];
    Table[A[n-k, k], {n, 0, 10}, {k, 0, n}] (* Jean-François Alcover, Jun 29 2019 *)

A381931 Triangular array T(n, k) read by rows: denominators of the coefficients for the iterated exponential F^{r}(x) = x + Sum_{n>=1} x^(n+1)*Sum_{k=1..n} r^(n+1-k)*A381932(n, k)/T(n, k) with F^{1}(x) = exp(x)-1 and F^{2}(x) = exp(exp(x)-1)-1.

Original entry on oeis.org

2, 4, 12, 8, 48, 48, 16, 144, 24, 180, 32, 1152, 1728, 5760, 8640, 64, 640, 3456, 5760, 17280, 6720, 128, 7680, 34560, 1152, 34560, 32256, 241920, 256, 26880, 82944, 414720, 41472, 580608, 107520, 1451520, 512, 430080, 645120, 622080, 4147200, 6967296, 21772800, 87091200, 43545600
Offset: 1

Views

Author

Thomas Scheuerle, Mar 10 2025

Keywords

Comments

This is the main entry for this sequence of fractions.
Convergence and analytic continuation of this series representation are interesting research topics with many unsolved problems and open questions.
Evaluating the polynomial of row n P(x) = Sum_{k=1..n} x^(n+1-k)*A381932(n, k)/T(n, k) gives A144150(n+1, x-1)/(n+1)!.

Examples

			Triangle T(n, k) begins:
[1]  2;
[2]  4,   12;
[3]  8,   48,     48;
[4]  16,  144,    24,     180;
[5]  32,  1152,   1728,   5760,   8640;
[6]  64,  640,    3456,   5760,   17280,   6720;
[7]  128, 7680,   34560,  1152,   34560,   32256,   241920;
[8]  256, 26880,  82944,  414720, 41472,   580608,  107520,   1451520;
[9]  512, 430080, 645120, 622080, 4147200, 6967296, 21772800, 87091200, 43545600;
.
F^{r}(x) = x
+ x^2*1/2*r
+ x^3*(1/4*r^2 - 1/12*r)
+ x^4*(1/8*r^3 - 5/48*r^2 + 1/48*r)
+ x^5*(1/16*r^4 - 13/144*r^3 + 1/24*r^2 - 1/180*r)
+ x^6*(1/32*r^5 - 77/1152*r^4 + 89/1728*r^3 - 91/5760*r^2 + 11/8640*r)
+ ... .
		

Crossrefs

Programs

  • PARI
    c(k, n) = {my(f=x); for(m=1, k, f=subst(f, x, exp(x)-1)); polcoeff(f+O(x^(n+1)), n)}
    row(n) = my(p=polinterpolate(vector(2*(n+1), k, k-1), vector(2*(n+1), k, c(k-1, n+1)))); vector(n, k, denominator(polcoeff(p, n-k+1)));

Formula

T(n, 1) = 2^n.
T(n, n) = denominator(A180609(n)/(n!*(n+1)!)).

A381932 Triangular array T(n, k) read by rows: denominators of the coefficients for the iterated exponential F^{r}(x) = x + Sum_{n>=1} x^(n+1)*Sum_{k=1..n} r^(n+1-k)*T(n, k)/A381931(n, k) with F^{1}(x) = exp(x)-1 and F^{2}(x) = exp(exp(x)-1)-1.

Original entry on oeis.org

1, 1, -1, 1, -5, 1, 1, -13, 1, -1, 1, -77, 89, -91, 11, 1, -29, 175, -149, 91, -1, 1, -223, 1501, -37, 391, -43, -11, 1, -481, 2821, -13943, 725, -2357, 17, 29, 1, -4609, 16099, -19481, 91313, -55649, 23137, 1727, 493, 1, -4861, 89993, -933293, 399637, -1061231, 2035739, -8189, 4897, -2711
Offset: 1

Views

Author

Thomas Scheuerle, Mar 12 2025

Keywords

Comments

The main entry for this sequence of fractions is in A381931.

Examples

			Triangle T(n, k) begins:
[1]  1;
[2]  1,    -1;
[3]  1,    -5,     1;
[4]  1,   -13,     1,     -1;
[5]  1,   -77,    89,    -91,    11;
[6]  1,   -29,   175,   -149,    91,     -1;
[7]  1,  -223,  1501,    -37,   391,    -43,   -11;
[8]  1,  -481,  2821, -13943,   725,  -2357,    17,   29;
[9]  1, -4609, 16099, -19481, 91313, -55649, 23137, 1727, 493;
.
F^{r}(x) = x
+ x^2*1/2*r
+ x^3*(1/4*r^2 - 1/12*r)
+ x^4*(1/8*r^3 - 5/48*r^2 + 1/48*r)
+ x^5*(1/16*r^4 - 13/144*r^3 + 1/24*r^2 - 1/180*r)
+ x^6*(1/32*r^5 - 77/1152*r^4 + 89/1728*r^3 - 91/5760*r^2 + 11/8640*r)
+ ... .
		

Crossrefs

Cf. A381931 (denominators).

Programs

  • PARI
    c(k, n) = {my(f=x); for(m=1, k, f=subst(f, x, exp(x)-1)); polcoeff(f+O(x^(n+1)), n)}
    row(n) = my(p=polinterpolate(vector(2*(n+1), k, k-1), vector(2*(n+1), k, c(k-1, n+1)))); vector(n, k, numerator(polcoeff(p, n-k+1)));

Formula

Conjecture: abs(T(n, 2)) = A064169(n - 1).
T(n, n) = numerator(A180609(n)/(n!*(n+1)!)).
Previous Showing 21-25 of 25 results.