cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A179090 Variant of Sylvester's sequence: a(n + 1) = a(n)^2 - a(n) + 1, with a(1) = 14.

Original entry on oeis.org

14, 183, 33307, 1109322943, 1230597390756858307, 1514369938137587813730274566118047943, 2293316309534841541915473293317407057146218304394352680966696226728483307
Offset: 1

Views

Author

Ivan Panchenko, Jun 29 2010

Keywords

Comments

The next term (a(8)) has 145 digits. - Harvey P. Dale, Jul 14 2021

Crossrefs

Programs

  • Mathematica
    NestList[#^2-#+1&,14,8] (* Harvey P. Dale, Jul 14 2021 *)

A179091 Variant of Sylvester's sequence: a(n + 1) = a(n)^2 - a(n) + 1, with a(1) = 15.

Original entry on oeis.org

15, 211, 44311, 1963420411, 3855019708367988511, 14861176951905611184725545411860008611, 220854580395850552531842289089175529937535309395681309187277137641134140711
Offset: 1

Views

Author

Ivan Panchenko, Jun 29 2010

Keywords

Comments

The next term a(8) has 149 digits. - Harvey P. Dale, Mar 14 2012

References

  • Mohammad K. Azarian, Sylvester's Sequence and the Infinite Egyptian Fraction Decomposition of 1, Problem 958, College Mathematics Journal, Vol. 42, No. 4, September 2011, p. 330. Solution published in Vol. 43, No. 4, September 2012, pp. 340-342

Crossrefs

Programs

  • Mathematica
    NestList[#^2-#+1&,15,7] (* Harvey P. Dale, Mar 14 2012 *)

A179092 Variant of Sylvester's sequence: a(n + 1) = a(n)^2 - a(n) + 1, with a(1) = 16.

Original entry on oeis.org

16, 241, 57841, 3345523441, 11192527090934957041, 125272662681312932108439098957580518641, 15693240015266013784686188640793618219085803766811358216456462217808967968241
Offset: 1

Views

Author

Ivan Panchenko, Jun 29 2010

Keywords

Comments

The next term (a(8)) has 153 digits. - Harvey P. Dale, May 11 2022

References

  • Mohammad K. Azarian, Sylvester's Sequence and the Infinite Egyptian Fraction Decomposition of 1, Problem 958, College Mathematics Journal, Vol. 42, No. 4, September 2011, p. 330. Solution published in Vol. 43, No. 4, September 2012, pp. 340-342

Crossrefs

Programs

  • Mathematica
    NestList[#^2-#+1&,16,6] (* Harvey P. Dale, May 11 2022 *)

A179093 Variant of Sylvester's sequence: a(n + 1) = a(n)^2 - a(n) + 1, with a(1) = 17.

Original entry on oeis.org

17, 273, 74257, 5514027793, 30404502496462423057, 924433772057389715967338233131182802193, 854577798920253967214683802805361134256432824758816469437971879296076582807057
Offset: 1

Views

Author

Ivan Panchenko, Jun 29 2010

Keywords

References

  • Mohammad K. Azarian, Sylvester's Sequence and the Infinite Egyptian Fraction Decomposition of 1, Problem 958, College Mathematics Journal, Vol. 42, No. 4, September 2011, p. 330. Solution published in Vol. 43, No. 4, September 2012, pp. 340-342

Crossrefs

Programs

  • Mathematica
    NestList[#^2-#+1&,17,10] (* Harvey P. Dale, Aug 16 2012 *)

A179121 Variant of Sylvester's sequence: a(n + 1) = a(n)^2 - a(n) + 1, with a(1) = 18.

Original entry on oeis.org

18, 307, 93943, 8825193307, 77884036897092402943, 6065923203387650816975131277148782658307, 36795424309396699379852983331957135547989414580911143782409880284213748733447943
Offset: 1

Views

Author

Ivan Panchenko, Jun 30 2010

Keywords

References

  • Mohammad K. Azarian, Sylvester's Sequence and the Infinite Egyptian Fraction Decomposition of 1, Problem 958, College Mathematics Journal, Vol. 42, No. 4, September 2011, p. 330. Solution published in Vol. 43, No. 4, September 2012, pp. 340-342

Crossrefs

A239899 a(0)=2, a(1)=5; thereafter a(n) = product of all preceding terms, minus 1.

Original entry on oeis.org

2, 5, 9, 89, 8009, 64152089, 4115490587216009, 16937262773463574696951813104089
Offset: 0

Views

Author

N. J. A. Sloane, Apr 05 2014

Keywords

Examples

			(9 + 1)*9 - 1 = 89, (89 + 1)*89 - 1 = 8009, (8009 + 1)*8009 - 1 = 64152089. - _Zak Seidov_, Apr 06 2014
		

Crossrefs

Programs

  • Magma
    I:=[2, 5, 9]; [n le 3 select I[n] else Self(n-1)*(Self(n-1)+1)-1: n in [1..10]]; // Vincenzo Librandi, May 22 2014

Formula

a(n) == 8 mod 9, for n > 2. - Ivan N. Ianakiev, Apr 06 2014
a(n) = (a(n-1)+1)*a(n-1)-1, for n > 2. - Zak Seidov, Apr 06 2014
Previous Showing 11-16 of 16 results.