cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A302171 G.f. A(x) satisfies: A(x) = Product_{k>=1} 1/(1 - x^k*A(x))^k.

Original entry on oeis.org

1, 1, 4, 14, 54, 213, 880, 3724, 16143, 71227, 319067, 1447160, 6633530, 30682425, 143028870, 671293632, 3169572659, 15044993968, 71752624923, 343658572717, 1652266087698, 7971518032791, 38581202763318, 187269381724629, 911404238805468, 4446493502832481, 21742327471261176
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 02 2018

Keywords

Examples

			G.f. A(x) = 1 + x + 4*x^2 + 14*x^3 + 54*x^4 + 213*x^5 + 880*x^6 + 3724*x^7 + 16143*x^8 + ...
G.f. A(x) satisfies: A(x) = 1/((1 - x*A(x)) * (1 - x^2*A(x))^2 * (1 - x^3*A(x))^3 * ...).
		

Crossrefs

Programs

  • Mathematica
    nmax = 30; A[] = 0; Do[A[x] = 1/Product[(1 - x^k*A[x])^k, {k, 1, nmax}] + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x] (* Vaclav Kotesovec, Sep 26 2023 *)

Formula

a(n) ~ c * d^n / n^(3/2), where d = 5.177446537296361283814259811908762546749... and c = 0.81395777803098291048009263980507199... - Vaclav Kotesovec, Sep 27 2023
Radius of convergence r = 0.1931454033945844258723936803941781838... = 1/d and A(r) = 2.2252305561396523944672847657756264073... satisfy (1) A(r) = 1 / Sum_{n>=1} n*r^n/(1 - r^n*A(r)) and (2) A(r) = 1 / Product_{n>=1} (1 - r^n*A(r))^n. - Paul D. Hanna, Mar 02 2024

A192478 G.f. satisfies: A(x) = x*Product_{n>=1} 1/(1 - x*A(x)^n).

Original entry on oeis.org

1, 0, 1, 1, 3, 5, 14, 28, 75, 170, 443, 1076, 2795, 7046, 18398, 47458, 124793, 326905, 865853, 2293103, 6114688, 16327765, 43800590, 117720693, 317452606, 857742087, 2323588888, 6306229600, 17151172495, 46725729232, 127522337636, 348562660876
Offset: 1

Views

Author

Paul D. Hanna, Jul 01 2011

Keywords

Comments

Related q-series identity (Euler):
Product_{n>=1} 1/(1-x*q^n) = Sum_{n>=0} x^n*q^n / Product_{k=1..n} (1-q^k); here q=A(x).

Examples

			G.f.: A(x) = x + x^3 + x^4 + 3*x^5 + 5*x^6 + 14*x^7 + 28*x^8 + 75*x^9 +...
The g.f. A = A(x) satisfies the relations:
A = x/((1 - x*A)*(1 - x*A^2)*(1 - x*A^3)*(1 - x*A^4)*...),
A = x*(1 + x*A/(1-A) + x^2*A^2/((1-A)*(1-A^2)) + x^3*A^3/((1-A)*(1-A^2)*(1-A^3)) +...).
A = x*(1 + x*A/((1-A)*(1-x*A)) + x^2*A^4/((1-A)*(1-x*A)*(1-A^2)*(1-x*A^2)) + x^3*A^9/((1-A)*(1-x*A)*(1-A^2)*(1-x*A^2)*(1-A^3)*(1-x*A^3)) +...).
		

Crossrefs

Programs

  • Mathematica
    nmax = 40; A[] = 0; Do[A[x] = x/Product[1 - x*A[x]^k, {k, 1, nmax}] + O[x]^(nmax + 1) // Normal, nmax + 1]; Rest[CoefficientList[A[x], x]] (* Vaclav Kotesovec, Sep 29 2023 *)
    (* Calculation of constants {d,c}: *) {1/r, s*Sqrt[r*((1 - r)*Log[1 - s] + (1 - 2*r)*Log[s] + (1 - r)* QPolyGamma[0, Log[r]/Log[s], s]) / (2*Pi*Log[s]*(2*(1 - r)*r - s^3*Derivative[0, 2][QPochhammer][r, s]))]} /. FindRoot[{(1 - r)*r == s*QPochhammer[r, s], s^2*Derivative[0, 1][QPochhammer][r, s] == (r - 1)*r}, {r, 1/3}, {s, 1/2}, WorkingPrecision -> 120] (* Vaclav Kotesovec, Sep 29 2023 *)
  • PARI
    {a(n) = my(A=x+x^2); for(i=1, n, A = x/prod(m=1, n, (1-x*A^m +x*O(x^n) ))); polcoeff(A, n)}
    
  • PARI
    {a(n) = my(A=x+x^2); for(i=1, n, A = x*sum(m=0, n, x^m*A^m/prod(k=1, m, (1-A^k +x*O(x^n) )))); polcoeff(A, n)}
    
  • PARI
    {a(n) = my(A=x+x^2); for(i=1, n, A = x*sum(m=0, sqrtint(n+1), A^(m^2)*x^m/prod(k=1, m, (1-A^k)*(1-x*A^k +x*O(x^n) )))); polcoeff(A, n)}

Formula

G.f. satisfies: A(x) = x*Sum_{n>=0} x^n*A(x)^n / Product_{k=1..n} (1 - A(x)^k).
G.f. satisfies: A(x) = x*Sum_{n>=0} x^n*A(x)^(n^2) / (Product_{k=1..n} (1 - A(x)^k)*(1 - x*A(x)^k)) due to Cauchy's identity.
a(n) ~ c * d^n / n^(3/2), where d = 2.8676696539306775593459072106295374201870092501605360805431348994... and c = 0.1427560675782905659177127310754143738629932908335931082457954696... - Vaclav Kotesovec, Sep 29 2023

A206638 G.f. satisfies: A(x) = Sum_{n>=0} 3^n*A(x)^n * x^(n^2) / Product_{k=1..n} (1 - 3*x^k)*(1 - x^k*A(x)).

Original entry on oeis.org

1, 3, 21, 147, 1074, 8076, 62454, 494292, 3990378, 32756142, 272715870, 2297982828, 19563641319, 168036314862, 1454458825605, 12674387617266, 111104771086812, 979101922849230, 8668964794053837, 77080072176742422, 687976906966730076, 6161811541538326680
Offset: 0

Views

Author

Paul D. Hanna, Feb 10 2012

Keywords

Examples

			G.f.: A(x) = 1 + 3*x + 21*x^2 + 147*x^3 + 1074*x^4 + 8076*x^5 +...
where the g.f. satisfies:
(0) A(x) = 1 + 3*x*A(x)/((1-3*x)*(1-x*A(x))) + 9*x^4*A(x)^2/((1-3*x)*(1-3*x^2)*(1-x*A(x))*(1-x^2*A(x))) + 27*x^9*A(x)^3/((1-3*x)*(1-3*x^2)*(1-3*x^3)*(1-x*A(x))*(1-x^2*A(x))*(1-x^3*A(x))) +...
(1) A(x) = 1 + 3*x*A(x)/(1-3*x) + 3*x^2*A(x)^2/((1-3*x)*(1-3*x^2)) + 3*x^3*A(x)^3/((1-3*x)*(1-3*x^2)*(1-3*x^3)) +...
(2) A(x) = 1 + 3*x*A(x)/(1-x*A(x)) + 9*x^2*A(x)/((1-x*A(x))*(1-x^2*A(x))) + 27*x^3*A(x)/((1-x*A(x))*(1-x^2*A(x))*(1-x^3*A(x))) +...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=1+sum(m=1, sqrtint(n+1), x^(m^2)*3^m*A^m/prod(k=1, m, (1-3*x^k)*(1-x^k*A+x*O(x^n))))); polcoeff(A, n)}
    
  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=1+sum(m=1, n, 3*x^m*A^m/prod(k=1, m, (1-3*x^k+x*O(x^n))))); polcoeff(A, n)}
    
  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=1+sum(m=1, n, 3^m*x^m*A/prod(k=1, m, (1-x^k*A+x*O(x^n))))); polcoeff(A, n)}
    for(n=0,35,print1(a(n),", "))

Formula

G.f. satisfies the identities:
(1) A(x) = 1 + Sum_{n>=1} 3*x^n*A(x)^n / Product_{k=1..n} (1 - 3*x^k).
(2) A(x) = 1 + Sum_{n>=1} 3^n*x^n*A(x) / Product_{k=1..n} (1 - x^k*A(x)).

A206639 G.f. A(x) satisfies A(x) = Sum_{n>=0} x^(n^2) * A(x)^(2*n) / Product_{k=1..n} (1 - x^k*A(x))^2.

Original entry on oeis.org

1, 1, 4, 18, 91, 489, 2751, 15985, 95218, 578324, 3568084, 22299964, 140885754, 898292262, 5772951668, 37355908797, 243184468271, 1591567315702, 10465836784159, 69114490893596, 458171948148640, 3047865264442504, 20339282134624054, 136122586785459512
Offset: 0

Views

Author

Paul D. Hanna, Feb 11 2012

Keywords

Examples

			G.f.: A(x) = 1 + x + 4*x^2 + 18*x^3 + 91*x^4 + 489*x^5 + 2751*x^6 +...
where the g.f. satisfies:
(0) A(x) = 1 + x*A(x)^2/(1-x*A(x))^2 + x^4*A(x)^4/((1-x*A(x))^2*(1-x^2*A(x))^2) + x^9*A(x)^6/((1-x*A(x))^2*(1-x^2*A(x))^2*(1-x^3*A(x))^2) +...
(1) A(x) = 1 + x*A(x)^2/(1-x*A(x)) + x^2*A(x)^3/((1-x*A(x))*(1-x^2*A(x))) + x^3*A(x)^4/((1-x*A(x))*(1-x^2*A(x))*(1-x^3*A(x))) +...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=1+sum(m=1, sqrtint(n+1), x^(m^2)*A^(2*m)/prod(k=1, m, 1-x^k*A+x*O(x^n))^2)); polcoeff(A, n)}
    
  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=1+sum(m=1, n, x^m*A^(m+1)/prod(k=1, m, (1-x^k*A+x*O(x^n))))); polcoeff(A, n)}
    for(n=0,30,print1(a(n),", "))

Formula

G.f. satisfies the identities:
(1) A(x) = 1 + Sum_{n>=1} x^n*A(x)^(n+1) / Product_{k=1..n} (1 - x^k*A(x)).
(2) A(x) = 1/(1 - Sum_{n>=1} x^n*A(x)^n / Product_{k=1..n} (1 - x^k*A(x)) ).

A302288 G.f. A(x) satisfies: A(x) = Product_{k>=1} 1/(1 - k*x^k*A(x)).

Original entry on oeis.org

1, 1, 4, 14, 55, 217, 908, 3864, 16894, 75078, 338862, 1548055, 7147427, 33294790, 156305144, 738753341, 3512431392, 16788169689, 80619590577, 388785776751, 1882063496033, 9142361671588, 44550166132194, 217716111661799, 1066792279046783, 5239947708977474, 25795965431819883
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 04 2018

Keywords

Examples

			G.f. A(x) = 1 + x + 4*x^2 + 14*x^3 + 55*x^4 + 217*x^5 + 908*x^6 + 3864*x^7 + 16894*x^8 + 75078*x^9 + 338862*x^10 + ...
G.f. A(x) satisfies: A(x) = 1/((1 - x*A(x)) * (1 - 2*x^2*A(x)) * (1 - 3*x^3*A(x)) * (1 - 4*x^4*A(x)) * ...).
		

Crossrefs

A262784 G.f. satisfies: A(x) = exp( Sum_{n>=1} A(x)^n * (x^n/n) / (1 + x^n) ).

Original entry on oeis.org

1, 1, 1, 3, 7, 18, 51, 147, 431, 1295, 3954, 12219, 38174, 120373, 382559, 1224173, 3940964, 12754732, 41476011, 135446194, 444016332, 1460619970, 4819995330, 15951789030, 52932499724, 176073789065, 587010353666, 1961118581900, 6564548926877, 22013613082514, 73945428978360, 248781470115309
Offset: 0

Views

Author

Paul D. Hanna, Oct 01 2015

Keywords

Comments

Compare to: exp( Sum_{n>=1} (x^n/n)/(1+x^n) ) = Sum_{n>=0} x^(n*(n+1)/2).

Examples

			G.f.: A(x) = 1 + x + x^2 + 3*x^3 + 7*x^4 + 18*x^5 + 51*x^6 + 147*x^7 +...
where
log(A(x)) = A(x)*x/(1+x) + A(x)^2*(x^2/2)/(1+x^2) + A(x)^3*(x^3/3)/(1+x^3) + A(x)^4*(x^4/4)/(1+x^4) + A(x)^5*(x^5/5)/(1+x^5) +...
explicitly,
log(A(x)) = x + x^2/2 + 7*x^3/3 + 17*x^4/4 + 56*x^5/5 + 187*x^6/6 + 617*x^7/7 + 2033*x^8/8 + 6811*x^9/9 + 22906*x^10/10 +...
		

Crossrefs

Cf. A145268.

Programs

  • PARI
    {a(n) = local(A=1+x); for(i=1,n, A = exp( sum(k=1,n, A^k*x^k/k/(1+x^k +x*O(x^n)))));polcoeff(A,n)}
    for(n=0,40,print1(a(n),", "))
Previous Showing 11-16 of 16 results.