cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A151694 G.f.: Product_{k>=1} (1 + 2*x^(2^k-1) + 2*x^(2^k)).

Original entry on oeis.org

1, 2, 2, 2, 6, 8, 4, 2, 6, 8, 8, 16, 28, 24, 8, 2, 6, 8, 8, 16, 28, 24, 12, 16, 28, 32, 48, 88, 104, 64, 16, 2, 6, 8, 8, 16, 28, 24, 12, 16, 28, 32, 48, 88, 104, 64, 20, 16, 28, 32, 48, 88, 104, 72, 56, 88, 120, 160, 272, 384, 336, 160, 32, 2, 6, 8, 8, 16, 28, 24, 12, 16, 28, 32, 48, 88
Offset: 0

Views

Author

N. J. A. Sloane, Jun 04 2009

Keywords

Examples

			From _Omar E. Pol_, Jun 09 2009: (Start)
Triangle begins:
  1;
  2,2;
  2,6,8,4;
  2,6,8,8,16,28,24,8;
  2,6,8,8,16,28,24,12,16,28,32,48,88,104,64,16;
  2,6,8,8,16,28,24,12,16,28,32,48,88,104,64,20,16,28,32,48,88,104,72,56,88,...
(End)
		

Crossrefs

For generating functions of the form Product_{k>=c} (1 + a*x^(2^k-1) + b*x^2^k) for the following values of (a,b,c) see: (1,1,0) A160573, (1,1,1) A151552, (1,1,2) A151692, (2,1,0) A151685, (2,1,1) A151691, (1,2,0) A151688 and A152980, (1,2,1) A151550, (2,2,0) A151693, (2,2,1) A151694.
Cf. A000079. - Omar E. Pol, Jun 09 2009

Programs

  • Mathematica
    CoefficientList[Series[Product[1+2x^(2^k-1)+2x^2^k,{k,10}],{x,0,80}],x] (* Harvey P. Dale, Oct 07 2020 *)

A160571 G.f.: Product_{n>=1} (1 + x^n + x^(n+1)).

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 10, 15, 21, 28, 38, 52, 70, 92, 119, 154, 200, 258, 329, 416, 523, 655, 819, 1022, 1269, 1566, 1924, 2357, 2879, 3507, 4263, 5170, 6250, 7530, 9048, 10849, 12980, 15496, 18466, 21967, 26079, 30894, 36526, 43109, 50792, 59743, 70160
Offset: 0

Views

Author

Paul D. Hanna, May 20 2009, May 21 2009, Jul 17 2011

Keywords

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 3*x^3 + 5*x^4 + 7*x^5 + 10*x^6 + 15*x^7 + ...
G.f.: A(x) = (1+x*(1+x))*(1+x^2*(1+x))*(1+x^3*(1+x))*(1+x^4*(1+x))*...
G.f.: A(x) = (1+x*(1+x)) + x^2*(1+x)*(1 + x^3*(1+x))*(1+x*(1+x))/(1-x) + x^7*(1+x)^2*(1 + x^5*(1+x))*(1+x*(1+x))*(1+x^2*(1+x))/((1-x)*(1-x^2)) + x^15*(1+x)^3*(1 + x^7*(1+x))*(1+x*(1+x))*(1+x^2*(1+x))*(1+x^3*(1+x))/((1-x)*(1-x^2)*(1-x^3)) + ...
G.f.: A(x) = 1 + x*(1+x)/(1-x) + x^3*(1+x)^2/((1-x)*(1-x^2)) + x^6*(1+x)^3/((1-x)*(1-x^2)*(1-x^3)) + x^10*(1+x)^4/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)) + ...
		

Crossrefs

Programs

  • Maple
    N:= 100: # for a(0)..a(N)
    P:= mul(1+x^n+x^(n+1),n=1..N):
    S:= series(P,x,N+1):
    seq(coeff(S,x,j),j=0..N); # Robert Israel, Sep 04 2018
  • Mathematica
    With[{nn=50},CoefficientList[Series[Product[1+x^n+x^(n+1),{n,1,nn}],{x,0,nn}],x]] (* Harvey P. Dale, Dec 29 2015 *)
  • PARI
    a(n)=polcoeff(prod(k=1,n,1+x^k*(1+x) +x*O(x^n)),n)
    
  • PARI
    {a(n)=local(A=1+x); A=sum(m=0, n, x^(m*(3*m+1)/2)*(1+x)^m*(1 + x^(2*m+1)*A)*prod(k=1, m, (1+A*x^k)/(1-x^k+x*O(x^n)))); polcoeff(A, n)}
    
  • PARI
    {a(n)=local(A=1+x); A=sum(m=0, n, x^(m*(m+1)/2)*(1+x)^m/prod(k=1, m, 1-x^k +x*O(x^n))); polcoeff(A, n)}

Formula

G.f.: A(x) = Sum_{n>=0} x^(n*(3*n+1)/2)*(1+x)^n*(1 + x^(2*n+1)*(1+x)) * Product_{k=1..n} (1 + x^k*(1+x))/(1-x^k) due to Sylvester's identity.
G.f.: A(x) = Sum_{n>=0} x^(n*(n+1)/2)*(1+x)^n / Product_{k=1..n} (1-x^k).
G.f.: exp(Sum_{k>=1} x^k * Sum_{d|k} (-1)^(d+1)*(1 + x)^d/d). - Ilya Gutkovskiy, Apr 18 2019
a(n) ~ c * exp(r*sqrt(n)) / n^(3/4), where r = 2*sqrt(-polylog(2,-2)) = 2.397287105779... and c = (-polylog(2,-2))^(1/4) / (6*sqrt(Pi)) = 0.10294821957... - Vaclav Kotesovec, Oct 24 2020, updated Jun 25 2021

A151553 G.f.: (1 + x) * Product_{n>=1} (1 + x^(2^n-1) + x^(2^n)).

Original entry on oeis.org

1, 2, 2, 2, 3, 4, 3, 2, 3, 4, 4, 5, 7, 7, 4, 2, 3, 4, 4, 5, 7, 7, 5, 5, 7, 8, 9, 12, 14, 11, 5, 2, 3, 4, 4, 5, 7, 7, 5, 5, 7, 8, 9, 12, 14, 11, 6, 5, 7, 8, 9, 12, 14, 12, 10, 12, 15, 17, 21, 26, 25, 16, 6, 2, 3, 4, 4, 5, 7, 7, 5, 5, 7, 8, 9, 12, 14, 11, 6, 5, 7, 8, 9, 12, 14, 12, 10, 12, 15, 17, 21, 26
Offset: 0

Views

Author

N. J. A. Sloane, May 20 2009

Keywords

Examples

			If formatted as a triangle:
.1,
.2,
.2,2,
.3,4,3,2,
.3,4,4,5,7,7,4,2,
.3,4,4,5,7,7,5,5,7,8,9,12,14,11,5,2,
.3,4,4,5,7,7,5,5,7,8,9,12,14,11,6,5,7,8,9,12,14,12,10,12,15,17,21,26,25,16,6,2,
.3,4,4,5,7,7,5,5,7,8,9,12,14,11,6,5,7,8,9,12,14,12,10,12,15,17,21,26,25,16,7
... 5,7,8,9,12,14,12,10,12,15,17,21,26,25,17,11,12,15,17,21,26,26,22,22,27,32,38,47,51,41,22,7,2,
.3,4,4,5,7,7,4,2, ...
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1+x)Product[1+x^(2^n-1)+x^2^n,{n,10}],{x,0,100}],x] (* Harvey P. Dale, Jul 13 2019 *)
    a[n_] := Sum[If[OddQ[n + k], Binomial[DigitCount[n + k, 2, 1], k], 0], {k, 0, 2*Floor[Log2[n + 1]] + 1}]; Array[a, 92, 0] (* Amiram Eldar, Jul 29 2023 *)

Formula

Recurrence: a(0)=1, a(1) = a(2) = 2; a(2^m-1)=2 for m >= 2; a(2^m) = 3 for m >= 2; a(2^m-2) = m for m >= 3; otherwise, for m >= 5, if m=2^i+j (0 <= j < 2^i - 1), a(m) = a(j) + a(j+1).
a(n) = Sum_{k>=0, n+k odd} binomial(A000120(n+k),k); the sum may be restricted further to k <= 2*A000523(n+1)+1 [based on Hagen von Eitzen's formula for A151552]. [corrected by Amiram Eldar, Jul 29 2023]

A151551 G.f.: (1 + 3x) * Product_{n>=1} (1 + x^(2^n-1) + 2*x^(2^n)).

Original entry on oeis.org

1, 4, 5, 7, 6, 13, 16, 13, 6, 13, 17, 20, 25, 42, 44, 25, 6, 13, 17, 20, 25, 42, 45, 32, 25, 43, 54, 65, 92, 128, 112, 49, 6, 13, 17, 20, 25, 42, 45, 32, 25, 43, 54, 65, 92, 128, 113, 56, 25, 43, 54, 65, 92, 129, 122, 89, 93, 140, 173, 222, 312, 368, 272, 97, 6, 13, 17, 20, 25, 42
Offset: 0

Views

Author

N. J. A. Sloane, May 19 2009

Keywords

Crossrefs

A151555 G.f.: (1 + 2x) * Product_{n>=1} (1 + x^(2^n-1) + 2*x^(2^n)).

Original entry on oeis.org

1, 3, 4, 5, 5, 10, 12, 9, 5, 10, 13, 15, 20, 32, 32, 17, 5, 10, 13, 15, 20, 32, 33, 23, 20, 33, 41, 50, 72, 96, 80, 33, 5, 10, 13, 15, 20, 32, 33, 23, 20, 33, 41, 50, 72, 96, 81, 39, 20, 33, 41, 50, 72, 97, 89, 66, 73, 107, 132, 172, 240, 272, 192, 65, 5, 10, 13, 15, 20, 32, 33, 23
Offset: 0

Views

Author

N. J. A. Sloane, May 20 2009

Keywords

Comments

From Gary W. Adamson, May 25 2009: (Start)
Convolved with A078008 signed (A151575) [1, 0, 2, -2, 6, -10, 22, -42, 86, -170, ...]
equals the toothpick sequence A153006: (1, 3, 6, 9, 13, 20, 28, ...). (End)
If A151550 is written as a triangle then the rows converge to this sequence. - N. J. A. Sloane, Jun 16 2009

Examples

			From _Omar E. Pol_, Jun 19 2009: (Start)
May be written as a triangle:
1;
3;
4,5;
5,10,12,9;
5,10,13,15,20,32,32,17;
5,10,13,15,20,32,33,23,20,33,41,50,72,96,80,33;
5,10,13,15,20,32,33,23,20,33,41,50,72,96,81,39,20,33,41,50,72,97,89,66,73,...
(End)
		

Crossrefs

A151554 G.f.: (1 + 2x) * Product_{n>=1} (1 + x^(2^n-1) + x^(2^n)).

Original entry on oeis.org

1, 3, 3, 3, 4, 6, 5, 3, 4, 6, 6, 7, 10, 11, 7, 3, 4, 6, 6, 7, 10, 11, 8, 7, 10, 12, 13, 17, 21, 18, 9, 3, 4, 6, 6, 7, 10, 11, 8, 7, 10, 12, 13, 17, 21, 18, 10, 7, 10, 12, 13, 17, 21, 19, 15, 17, 22, 25, 30, 38, 39, 27, 11, 3, 4, 6, 6, 7, 10, 11, 8, 7, 10, 12, 13, 17, 21, 18, 10, 7, 10, 12, 13
Offset: 0

Views

Author

N. J. A. Sloane, May 20 2009

Keywords

Crossrefs

A151684 Let c(n) = x^(2^n-1)*(1-x^(2^n)), g(n) = 1 + x^(2^n-1) + x^(2^n), h(n) = Product_{i=1..n} g(i); then use g.f. (1+2*x) - Sum_{n>=1} c(n)/h(n).

Original entry on oeis.org

1, 1, 1, 0, -1, 1, 1, -1, 0, 0, -2, 1, 2, 0, 2, -1, -5, -1, 1, 3, 7, 1, -8, -8, -6, 3, 18, 16, 0, -17, -31, -21, 19, 51, 47, 3, -70, -106, -48, 71, 170, 156, -18, -243, -318, -132, 253, 564, 455, -130, -819, -1024, -341, 952, 1849, 1355, -606, -2789, -3199, -727, 3410, 5979, 3932, -2678, -9408, -9926, -1281, 12047
Offset: 0

Views

Author

N. J. A. Sloane, Jun 01 2009

Keywords

Comments

This g.f. multiplied by h(k) for k large (cf. A151552) gives the g.f. for (A160573 prefixed by an initial 1).

Crossrefs

Previous Showing 11-17 of 17 results.