cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A152581 Generalized Fermat numbers: a(n) = 8^(2^n) + 1, n >= 0.

Original entry on oeis.org

9, 65, 4097, 16777217, 281474976710657, 79228162514264337593543950337, 6277101735386680763835789423207666416102355444464034512897
Offset: 0

Views

Author

Cino Hilliard, Dec 08 2008

Keywords

Comments

These numbers are all composite. We rewrite 8^(2^n) + 1 = (2^(2^n))^3 + 1.
Then by the identity a^n + b^n = (a+b)*(a^(n-1) - a^(n-2)*b + ... + b^(n-1)) for odd n, 2^(2^n) + 1 divides 8^(2^n) + 1. All factors of generalized Fermat numbers F_n(a,b) := a^(2^n)+b^(2^n), a >= 2, n >= 0, are of the form k*2^m+1, k >= 1, m >=0 (Riesel (1994)). - Daniel Forgues, Jun 19 2011

Examples

			For n = 3, 8^(2^3) + 1 = 16777217. Similarly, (2^8)^3 + 1 = 16777217. Then 2^8 + 1 = 257 and 16777217/257 = 65281.
		

Crossrefs

Cf. A000215 (Fermat numbers: 2^(2^n) + 1, n >= 0).

Programs

Formula

a(0)=9, a(n) = (a(n-1) - 1)^2 + 1, n >= 1.
Sum_{n>=0} 2^n/a(n) = 1/7. - Amiram Eldar, Oct 03 2022

Extensions

Edited by Daniel Forgues, Jun 19 2011

A275383 Number of prime factors (with multiplicity) of generalized Fermat number 12^(2^n) + 1.

Original entry on oeis.org

1, 2, 2, 3, 2, 2, 5, 2, 5
Offset: 0

Views

Author

Arkadiusz Wesolowski, Jul 25 2016

Keywords

Examples

			b(n) = 12^(2^n) + 1.
Complete Factorizations
b(0) = 13
b(1) = 5*29
b(2) = 89*233
b(3) = 17*97*260753
b(4) = 153953*1200913648289
b(5) = 769*44450180997616192602560262634753
b(6) = 36097*81281*69619841*73389730593973249*P35
b(7) = 257*P136
b(8) = 8253953*295278642689*5763919006323142831065059613697*P96*P132
		

Crossrefs

Programs

  • Mathematica
    Table[PrimeOmega[12^(2^n) + 1], {n, 0, 7}] (* Michael De Vlieger, Jul 26 2016 *)
  • PARI
    a(n) = bigomega(factor(12^(2^n)+1))

Formula

a(n) = A001222(A152585(n)). - Felix Fröhlich, Jul 25 2016

Extensions

a(8) was found in 2009 by Tom Womack
Previous Showing 11-12 of 12 results.