cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A154909 Decimal expansion of log_4 (18).

Original entry on oeis.org

2, 0, 8, 4, 9, 6, 2, 5, 0, 0, 7, 2, 1, 1, 5, 6, 1, 8, 1, 4, 5, 3, 7, 3, 8, 9, 4, 3, 9, 4, 7, 8, 1, 6, 5, 0, 8, 7, 5, 9, 8, 1, 4, 4, 0, 7, 6, 9, 2, 4, 8, 1, 0, 6, 0, 4, 5, 5, 7, 5, 2, 6, 5, 4, 5, 4, 1, 0, 9, 8, 2, 2, 7, 7, 9, 4, 3, 5, 8, 5, 6, 2, 5, 2, 2, 2, 8, 0, 4, 7, 4, 9, 1, 8, 0, 8, 8, 2, 4
Offset: 1

Views

Author

N. J. A. Sloane, Oct 30 2009

Keywords

Examples

			2.0849625007211561814537389439478165087598144076924810604557...
		

Crossrefs

Cf. A020857 (log_2(3)).
Cf. decimal expansion of log_4(m): A094148 (m=3), A153201 (m=5), A153460 (m=6), A153615 (m=7), A154155 (m=10), A154176 (m=11), A154197 (m=12), A154224 (m=13), A154464 (m=14), A154543 (m=15), A154849 (m=17), this sequence, A155004 (m=19), A155183 (m=20), A155545 (m=21), A155695 (m=22), A155818 (m=23), A155936 (m=24).

Programs

  • Mathematica
    RealDigits[Log[4, 18], 10, 100][[1]] (* Vincenzo Librandi, Aug 30 2013 *)

Formula

Equals A020857+1/2. - R. J. Mathar, Feb 15 2025

A155004 Decimal expansion of log_4 (19).

Original entry on oeis.org

2, 1, 2, 3, 9, 6, 3, 7, 5, 6, 7, 2, 1, 7, 9, 2, 7, 4, 6, 8, 9, 6, 7, 5, 9, 7, 1, 1, 4, 5, 3, 4, 1, 7, 2, 1, 1, 3, 4, 6, 7, 5, 3, 7, 8, 4, 8, 3, 0, 7, 6, 7, 0, 0, 7, 2, 9, 0, 7, 6, 2, 3, 6, 5, 4, 3, 2, 2, 8, 2, 6, 0, 4, 1, 0, 2, 7, 3, 2, 4, 4, 3, 4, 0, 1, 3, 5, 4, 0, 2, 7, 0, 8, 6, 0, 8, 8, 2, 5
Offset: 1

Views

Author

N. J. A. Sloane, Oct 30 2009

Keywords

Examples

			2.1239637567217927468967597114534172113467537848307670072907...
		

Crossrefs

Cf. decimal expansion of log_4(m): A094148 (m=3), A153201 (m=5), A153460 (m=6), A153615 (m=7), A154155 (m=10), A154176 (m=11), A154197 (m=12), A154224 (m=13), A154464 (m=14), A154543 (m=15), A154849 (m=17), A154909 (m=18), this sequence, A155183 (m=20), A155545 (m=21), A155695 (m=22), A155818 (m=23), A155936 (m=24).

Programs

A155183 Decimal expansion of log_4 (20).

Original entry on oeis.org

2, 1, 6, 0, 9, 6, 4, 0, 4, 7, 4, 4, 3, 6, 8, 1, 1, 7, 3, 9, 3, 5, 1, 5, 9, 7, 1, 4, 7, 4, 4, 6, 9, 5, 0, 8, 7, 9, 3, 2, 4, 1, 5, 6, 9, 6, 5, 1, 2, 2, 9, 0, 3, 0, 6, 0, 2, 7, 3, 7, 8, 1, 9, 7, 9, 0, 7, 9, 6, 7, 3, 8, 8, 3, 0, 4, 3, 1, 2, 6, 0, 7, 9, 2, 5, 0, 6, 9, 8, 7, 1, 6, 7, 9, 6, 8, 5, 0, 7
Offset: 1

Views

Author

N. J. A. Sloane, Oct 30 2009

Keywords

Examples

			2.1609640474436811739351597147446950879324156965122903060273...
		

Crossrefs

Cf. decimal expansion of log_4(m): A094148 (m=3), A153201 (m=5), A153460 (m=6), A153615 (m=7), A154155 (m=10), A154176 (m=11), A154197 (m=12), A154224 (m=13), A154464 (m=14), A154543 (m=15), A154849 (m=17), A154909 (m=18), A155004 (m=19), this sequence, A155545 (m=21), A155695 (m=22), A155818 (m=23), A155936 (m=24).

Programs

  • Mathematica
    RealDigits[Log[4, 20], 10, 100][[1]] (* Vincenzo Librandi, Aug 30 2013 *)

Formula

Equals 1/2+ A154155 = 1 + A153201. - R. J. Mathar, May 25 2023

A155545 Decimal expansion of log_4 (21).

Original entry on oeis.org

2, 1, 9, 6, 1, 5, 8, 7, 1, 1, 3, 8, 9, 3, 8, 0, 1, 4, 4, 4, 4, 7, 8, 5, 4, 1, 3, 0, 5, 8, 9, 8, 2, 3, 6, 5, 8, 7, 0, 0, 4, 2, 0, 5, 1, 6, 8, 2, 9, 3, 1, 0, 9, 2, 2, 0, 6, 6, 5, 2, 2, 1, 8, 9, 3, 0, 5, 7, 0, 9, 5, 3, 8, 3, 2, 8, 2, 7, 5, 7, 7, 4, 5, 1, 0, 0, 7, 0, 7, 3, 7, 0, 4, 4, 1, 4, 9, 5, 1
Offset: 1

Views

Author

N. J. A. Sloane, Oct 30 2009

Keywords

Examples

			2.1961587113893801444478541305898236587004205168293109220665...
		

Crossrefs

Cf. decimal expansion of log_4(m): A094148 (m=3), A153201 (m=5), A153460 (m=6), A153615 (m=7), A154155 (m=10), A154176 (m=11), A154197 (m=12), A154224 (m=13), A154464 (m=14), A154543 (m=15), A154849 (m=17), A154909 (m=18), A155004 (m=19), A155183 (m=20), this sequence, A155695 (m=22), A155818 (m=23), A155936 (m=24).

Programs

  • Mathematica
    RealDigits[Log[4, 21], 10, 100][[1]] (* Vincenzo Librandi, Aug 30 2013 *)

A155695 Decimal expansion of log_4 (22).

Original entry on oeis.org

2, 2, 2, 9, 7, 1, 5, 8, 0, 9, 3, 1, 8, 6, 4, 8, 6, 2, 8, 0, 9, 9, 6, 8, 1, 5, 2, 3, 3, 6, 2, 8, 9, 6, 4, 7, 9, 3, 5, 1, 6, 1, 5, 7, 6, 2, 8, 4, 0, 8, 8, 4, 0, 3, 5, 6, 5, 6, 4, 0, 0, 8, 2, 2, 8, 6, 3, 1, 6, 5, 3, 0, 9, 8, 6, 0, 0, 0, 9, 1, 7, 6, 3, 5, 4, 7, 4, 5, 6, 4, 9, 6, 4, 3, 4, 5, 0, 2, 4
Offset: 1

Views

Author

N. J. A. Sloane, Oct 30 2009

Keywords

Examples

			2.2297158093186486280996815233628964793516157628408840356564...
		

Crossrefs

Cf. decimal expansion of log_4(m): A094148 (m=3), A153201 (m=5), A153460 (m=6), A153615 (m=7), A154155 (m=10), A154176 (m=11), A154197 (m=12), A154224 (m=13), A154464 (m=14), A154543 (m=15), A154849 (m=17), A154909 (m=18), A155004 (m=19), A155183 (m=20), A155545 (m=21), this sequence, A155818 (m=23), A155936 (m=24).

Programs

  • Mathematica
    RealDigits[Log[4,22],10,100][[1]]  (* Harvey P. Dale, Apr 18 2011 *)

A155818 Decimal expansion of log_4 (23).

Original entry on oeis.org

2, 2, 6, 1, 7, 8, 0, 9, 7, 8, 0, 2, 8, 5, 0, 6, 4, 3, 6, 1, 4, 7, 0, 7, 4, 1, 2, 2, 0, 8, 1, 3, 3, 4, 4, 2, 2, 2, 4, 9, 4, 1, 2, 5, 6, 2, 7, 2, 1, 2, 7, 7, 5, 2, 9, 7, 4, 7, 2, 2, 1, 8, 6, 6, 0, 0, 7, 3, 8, 9, 0, 7, 2, 7, 8, 1, 3, 8, 2, 3, 4, 8, 0, 5, 5, 3, 7, 7, 2, 6, 2, 9, 3, 1, 0, 4, 4, 1, 0
Offset: 1

Views

Author

N. J. A. Sloane, Oct 30 2009

Keywords

Examples

			2.2617809780285064361470741220813344222494125627212775297472...
		

Crossrefs

Cf. decimal expansion of log_4(m): A094148 (m=3), A153201 (m=5), A153460 (m=6), A153615 (m=7), A154155 (m=10), A154176 (m=11), A154197 (m=12), A154224 (m=13), A154464 (m=14), A154543 (m=15), A154849 (m=17), A154909 (m=18), A155004 (m=19), A155183 (m=20), A155545 (m=21), A155695 (m=22), this sequence, A155936 (m=24).

Programs

  • Mathematica
    RealDigits[Log[4, 23], 10, 100][[1]] (* Vincenzo Librandi, Aug 30 2013 *)

A155936 Decimal expansion of log_4 (24).

Original entry on oeis.org

2, 2, 9, 2, 4, 8, 1, 2, 5, 0, 3, 6, 0, 5, 7, 8, 0, 9, 0, 7, 2, 6, 8, 6, 9, 4, 7, 1, 9, 7, 3, 9, 0, 8, 2, 5, 4, 3, 7, 9, 9, 0, 7, 2, 0, 3, 8, 4, 6, 2, 4, 0, 5, 3, 0, 2, 2, 7, 8, 7, 6, 3, 2, 7, 2, 7, 0, 5, 4, 9, 1, 1, 3, 8, 9, 7, 1, 7, 9, 2, 8, 1, 2, 6, 1, 1, 4, 0, 2, 3, 7, 4, 5, 9, 0, 4, 4, 1, 2
Offset: 1

Views

Author

N. J. A. Sloane, Oct 30 2009

Keywords

Examples

			2.2924812503605780907268694719739082543799072038462405302278...
		

Crossrefs

Cf. decimal expansion of log_4(m): A094148 (m=3), A153201 (m=5), A153460 (m=6), A153615 (m=7), A154155 (m=10), A154176 (m=11), A154197 (m=12), A154224 (m=13), A154464 (m=14), A154543 (m=15), A154849 (m=17), A154909 (m=18), A155004 (m=19), A155183 (m=20), A155545 (m=21), A155695 (m=22), A155818 (m=23), this sequence.

Programs

  • Mathematica
    RealDigits[Log[4, 24], 10, 100][[1]] (* Vincenzo Librandi, Aug 30 2013 *)

Formula

3/2 + A094148. - R. J. Mathar, Sep 24 2011

A379446 a(n) is the number of ones in the binary expansion of 10^(10^n).

Original entry on oeis.org

2, 11, 105, 1163, 11683, 115979, 1161413, 11606847, 116093517, 1160951533, 11609679812, 116096181467, 1160963225086
Offset: 0

Views

Author

Hugo Pfoertner, Dec 26 2024

Keywords

Crossrefs

Programs

  • PARI
    a379446(n) = hammingweight(5^(10^n))

Formula

Conjectured: Limit_{n->oo} a(n)/10^n = log(5)/log(4). (A153201)

Extensions

a(12) from Markus Sigg, Dec 28 2024
Previous Showing 11-18 of 18 results.