cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A153684 Greatest number m such that the fractional part of (1024/1000)^A153680(n) >= 1-(1/m).

Original entry on oeis.org

1, 93, 123, 1061, 395, 1360, 4137, 2706, 66910, 21740, 15986, 58999, 571666, 1192010, 793642, 1093343, 3476524
Offset: 1

Views

Author

Hieronymus Fischer, Jan 06 2009

Keywords

Examples

			a(2)=93, since 1-(1/94)=0.98936...>fract((1024/1000)^A153680(2))=fract((1024/1000)^29)=0.98929...>=1-(1/93).
		

Crossrefs

Formula

a(n):=floor(1/(1-fract((1024/1000)^A153680(n)))), where fract(x) = x-floor(x).

Extensions

a(16) - a(17) from Hagen von Eitzen, May 16 2009

A153700 Greatest number m such that the fractional part of (10/9)^A153696(n) >= 1-(1/m).

Original entry on oeis.org

1, 8, 15, 264, 8741, 15912, 409895
Offset: 1

Views

Author

Hieronymus Fischer, Jan 06 2009

Keywords

Examples

			a(3)=15, since 1-(1/16)=0.9375>fract((10/9)^A153696(3))=fract((10/9)^13)=0.9341...>=1-(1/15).
		

Crossrefs

Formula

a(n):=floor(1/(1-fract((10/9)^A153696(n)))), where fract(x) = x-floor(x).

A153692 Greatest number m such that the fractional part of (11/10)^A153688(n) >= 1-(1/m).

Original entry on oeis.org

1, 19, 151, 200, 709, 5727, 15908, 162819, 120479, 109526, 302991
Offset: 1

Views

Author

Hieronymus Fischer, Jan 06 2009

Keywords

Examples

			a(2)=19, since 1-(1/20)=0.95>fract((11/10)^A153688(2))=fract((11/10)^7)=0.9487...>=1-(1/19).
		

Crossrefs

Formula

a(n):=floor(1/(1-fract((11/10)^A153688(n)))), where fract(x) = x-floor(x).

A154133 Numbers k such that the fractional part of (4/3)^k is greater than 1-(1/k).

Original entry on oeis.org

1, 2, 8, 39, 113, 3895, 4714, 8592, 34289, 60097, 942859, 2759790, 6649343, 7937397, 14480816, 19338413, 19338414, 19338415, 23187701, 124679421
Offset: 1

Views

Author

Hieronymus Fischer, Jan 11 2009

Keywords

Comments

Numbers k such that fract((4/3)^k) > 1-(1/k), where fract(x) = x - floor(x).
The next term is greater than 3*10^8.

Examples

			a(4) = 39, since fract((4/3)^39) = 0.9991861450... > 0.974358... = 1 - (1/39), but fract((4/3)^k) <= 1 - (1/k) for 8 < k < 39.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[5000], N[FractionalPart[(4/3)^#], 100] > 1 - (1/#) &] (* G. C. Greubel, Sep 02 2016 *)
  • PARI
    isok(n) = frac((4/3)^n) > 1 - 1/n; \\ Michel Marcus, Sep 03 2016

Extensions

a(11)-a(20) from Robert Gerbicz, Nov 21 2010
Previous Showing 11-14 of 14 results.