A174264
Irregular triangle T(n, k) = [x^k]( p(n, x) ), where p(n, x) = (1/x)*(1-x)^(3*n+1)*Sum_{k >= 0} (k*(k+1)*(2*k+1)/6)^n*x^k and p(0, x) = 1, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 18, 42, 18, 1, 1, 115, 1539, 5065, 5065, 1539, 115, 1, 1, 612, 30369, 359056, 1439038, 2255448, 1439038, 359056, 30369, 612, 1, 1, 3109, 487944, 16069256, 177275075, 808273143, 1688579472, 1688579472, 808273143, 177275075, 16069256, 487944, 3109, 1
Offset: 0
Irregular triangle begins as:
1;
1, 1;
1, 18, 42, 18, 1;
1, 115, 1539, 5065, 5065, 1539, 115, 1;
1, 612, 30369, 359056, 1439038, 2255448, 1439038, 359056, 30369, 612, 1;
-
(* First program *)
p[n_, x_]:= p[n,x]= If[n==0, 1, (1-x)^(3*n+1)*Sum[(k*(k+1)*(2*k+1)/6)^n*x^k, {k, 0, Infinity}]/x];
Table[CoefficientList[p[n, x], x], {n,0,10}]//Flatten
(* Second program *)
T[n_, k_]:= T[n, k]= If[n<2, Binomial[n, k], Sum[(-1)^(k-j+1)*Binomial[3*n+1, k-j +1]*(j*(1+j)*(1+2*j)/6)^n, {j,0,k+1}]];
Join[{1}, Table[T[n, k], {n,0,10}, {k,0,3*n-2}]//Flatten] (* G. C. Greubel, Mar 25 2022 *)
-
@CachedFunction
def T(n,k):
if (n<2): return binomial(n,k)
else: return sum( (-1)^(k-j+1)*binomial(3*n+1, k-j+1)*(j*(1+j)*(1+2*j)/6)^n for j in (0..k+1) )
[1]+flatten([[T(n,k) for k in (0..3*n-2)] for n in (0..10)]) # G. C. Greubel, Mar 25 2022
A151626
Number of permutations of 2 indistinguishable copies of 1..n with exactly 4 adjacent element pairs in decreasing order.
Original entry on oeis.org
0, 0, 1, 603, 47290, 1822014, 49258935, 1086859301, 21147576440, 379269758400, 6441229796061, 105398150289775, 1680774708581766, 26324724399068626, 407112461900381715, 6239897666881158537, 95036195852840662820, 1440959515956284422196, 21778829725476446172249
Offset: 1
- Andrew Howroyd, Table of n, a(n) for n = 1..200
- Index entries for linear recurrences with constant coefficients, signature (70, -2163, 39122, -462914, 3792972, -22214806, 94629124, -295393077, 675442494, -1122134391, 1331169066, -1093400856, 588623760, -186332400, 26244000).
-
A151626:= func< n | (&+[(-1)^(j+1)*Binomial(2*n+1,5-j)*Binomial(j+1,2)^n: j in [1..5]]) >;
[A151626(n): n in [1..30]]; // G. C. Greubel, Sep 07 2022
-
With[{B=Binomial}, Table[Sum[(-1)^(j+1)*B[2n+1, 5-j]*B[j+1,2]^n, {j,5}], {n,30}]] (* G. C. Greubel, Sep 07 2022 *)
-
a(n) = {15^n - (2*n + 1)*10^n + binomial(2*n+1, 2)*6^n - binomial(2*n+1, 3)*3^n + binomial(2*n+1, 4) } \\ Andrew Howroyd, May 07 2020
-
@CachedFunction
def A151626(n): return sum((-1)^(j+1)*binomial(2*n+1,5-j)*binomial(j+1,2)^n for j in (1..5))
[A151626(n) for n in (1..30)] # G. C. Greubel, Sep 07 2022
A151627
Number of permutations of 2 indistinguishable copies of 1..n with exactly 5 adjacent element pairs in decreasing order.
Original entry on oeis.org
0, 0, 0, 72, 27664, 2864328, 163809288, 6727188848, 225167210712, 6590156148912, 175992170793456, 4407169187423736, 105396936343707456, 2437638848729751736, 55010494951127561400, 1219075824289276443744, 26652917330108137129544, 576864003740129587504224
Offset: 1
- Andrew Howroyd, Table of n, a(n) for n = 1..200
- Index entries for linear recurrences with constant coefficients, signature (126, -7245, 252750, -5998905, 102950910, -1325335665, 13104159030, -101064788055, 614053303570, -2956203883287, 11303748373482, -34308033838515, 82354980144330, -155288585585115, 227560437228978, -255076375732668, 213622511296680, -128922602864400, 52813189404000, -13115963880000, 1488034800000).
-
[(&+[(-1)^j*Binomial(2*n+1, j)*Binomial(7-j, 2)^n: j in [0..5]]): n in [1..30]]; // G. C. Greubel, Sep 07 2022
-
With[{B = Binomial}, Table[Sum[(-1)^j*B[2n+1,j]*B[7-j,2]^n, {j,0,5}], {n, 30}]] (* G. C. Greubel, Sep 07 2022 *)
-
@CachedFunction
def A151627(n): return sum((-1)^j*binomial(2*n+1, j)*binomial(7-j, 2)^n for j in (0..5))
[A151627(n) for n in (1..30)] # G. C. Greubel, Sep 07 2022
A151628
Number of permutations of 2 indistinguishable copies of 1..n with exactly 6 adjacent element pairs in decreasing order.
Original entry on oeis.org
0, 0, 0, 1, 5158, 1822014, 242384856, 19323413187, 1130781824398, 54076536713976, 2251621794635088, 84973986733001061, 2985450779006443846, 99474230412387811666, 3185003930126491696920, 98939258210106714816135, 3003063241991742340646382, 89537653738976723063722828
Offset: 1
- Andrew Howroyd, Table of n, a(n) for n = 1..200
- Index entries for linear recurrences with constant coefficients, signature (210, -20559, 1249006, -52877484, 1660698792, -40217937324, 770684131800, -11898983656350, 149952459677980, -1556983686224082, 13409725967210820, -96243862494272068, 577309836510214632, -2898323263572570108, 12179135493109203192, -42783931230910840233, 125321632824303394722, -304873695791112375063, 612528671944484732862, -1008704075532213688776, 1347947980011397405152, -1442243815707288575520, 1213235943921688622400, -782048981957040864000, 371788922872056960000, -122537228378997600000, 24957111340728000000, -2362404048480000000).
-
[(&+[(-1)^j*Binomial(2*n+1, j)*Binomial(8-j, 2)^n: j in [0..6]]): n in [1..30]]; // G. C. Greubel, Sep 07 2022
-
With[{B=Binomial}, Table[Sum[(-1)^j*B[2n+1,j]*B[8-j,2]^n, {j,0,6}], {n, 30}]] (* G. C. Greubel, Sep 07 2022 *)
-
@CachedFunction
def A151628(n): return sum((-1)^j*binomial(2*n+1, j)*binomial(8-j, 2)^n for j in (0..6))
[A151628(n) for n in (1..30)] # G. C. Greubel, Sep 07 2022
A151629
Number of permutations of 2 indistinguishable copies of 1..n with exactly 7 adjacent element pairs in decreasing order.
Original entry on oeis.org
0, 0, 0, 0, 232, 450048, 163809288, 27306899520, 2898916824320, 230479103253264, 15045786224718576, 853790829031070016, 43726349865720132216, 2073954076439134340896, 92786533933117718314680, 3968339124661862533557120, 163867469809854783921566544
Offset: 1
- Andrew Howroyd, Table of n, a(n) for n = 1..200
- Index entries for linear recurrences with constant coefficients, signature (330, -51513, 5066402, -352805739, 18532822542, -764011192951, 25389927552654, -693360910567062, 15782229920923084, -302672805175992858, 4931504254236896916, -68703084605396486102, 822462579151947202524, -8492510968865324313198, 75847875003485374953052, -587051007000593357006397, 3942243867122711876178882, -22980348438736769272554525, 116263149690925646738764650, -510093882106104569146940943, 1937990696541806422436512950, -6362481040931909732744369259, 17998658175922136342871558966, -43712735312807208911181978972, 90728113301609002223916131208, -160019275941921567466090870848, 238141442344924194341467169088, -296416786921079653107637015680, 305161844579852353104555820800, -256124655172887234493061088000, 171916771042339597743180480000, -89854952889081931534972800000, 35162508668121498752928000000, -9674457989784467806080000000, 1666424129434910092800000000, -135019896025206528000000000).
-
[(&+[(-1)^j*Binomial(2*n+1, j)*Binomial(9-j, 2)^n: j in [0..7]]): n in [1..30]]; // G. C. Greubel, Sep 08 2022
-
With[{B=Binomial}, Table[Sum[(-1)^j*B[2n+1, j]*B[9-j, 2]^n, {j,0,7}], {n, 30}]] (* G. C. Greubel, Sep 08 2022 *)
-
def A151629(n): return sum((-1)^j*binomial(2*n+1, j)*binomial(9-j, 2)^n for j in (0..7))
[A151629(n) for n in (1..30)] # G. C. Greubel, Sep 08 2022
A151630
Number of permutations of 2 indistinguishable copies of 1..n with exactly 8 adjacent element pairs in decreasing order.
Original entry on oeis.org
0, 0, 0, 0, 1, 37257, 49258935, 19323413187, 3950966047950, 539417838175698, 56160822639510114, 4828612774471173450, 360918591663105680031, 24285778099889122541071, 1507815882167268489272385, 87937588306397361416746005, 4882223035755085016119166100
Offset: 1
- Andrew Howroyd, Table of n, a(n) for n = 1..200
- G. C. Greubel, Generating functions
- Index entries for linear recurrences with constant coefficients, signature (495, -117117, 17647773, -1903962060, 156757247010, -10251395632590, 547263937214190, -24324431827594815, 913604942997437285, -29330261021755017639, 812145644279366953815, -19536467308476604835118, 410659658077014965566332, -7578696975148131792068340, 123267861018665262572785476, -1772533955817200772006505695, 22589412092760272526249081417, -255637202218592552368928158843, 2572704107472364912183081654395, -23049204197252732334976831299504, 183953147111817401024161390520370, -1308189874199616697817539200074238, 8289399765160712341131849367972542, -46783616321998478795458149057122145, 234999225964232933834149112694372867, -1049484407925242792828750467607365185, 4161052733141162438991333881629966449, -14620606470238507069638288669331531446, 45425825709704628283109430191976080400, -124468763777608175568796041188271717984, 299821137334135681782712542449338805040, -632525928565428301410709620694018226208, 1163532979856355964909411340878324232832, -1856399981685264274584742456532993660160, 2552803207326431764967213761527030470400, -3002667039899658352436610420272301120000, 2992862237498353265892271006627584000000, -2498577025975608447805248342475776000000, 1721249910903347055783181973286720000000, -959341910144268687109525373846400000000, 420984649108341364830441158592000000000, -139779856035015771303825062400000000000, 32957940077972879881652858880000000000, -4910962939069964235908198400000000000, 347259290825980971841536000000000000).
-
[(&+[(-1)^j*Binomial(2*n+1, j)*Binomial(10-j, 2)^n: j in [0..8]]): n in [1..30]]; // G. C. Greubel, Sep 08 2022
-
With[{B=Binomial}, Table[Sum[(-1)^j*B[2n+1,j]*B[10-j,2]^n, {j,0,8}], {n, 30}]] (* G. C. Greubel, Sep 08 2022 *)
-
def A151630(n): return sum((-1)^j*binomial(2*n+1, j)*binomial(10-j, 2)^n for j in (0..8))
[A151630(n) for n in (1..30)] # G. C. Greubel, Sep 08 2022
A151631
Number of permutations of 2 indistinguishable copies of 1..n with exactly 9 adjacent element pairs in decreasing order.
Original entry on oeis.org
0, 0, 0, 0, 0, 716, 6030140, 6727188848, 2898916824320, 713977455470200, 121976270685699352, 16151017610840330800, 1776999565259831468176, 170177528415687895764196, 14652450038892876986833140, 1161079239300986084649361440, 86154881092488160155801056400
Offset: 1
- Andrew Howroyd, Table of n, a(n) for n = 1..200
- G. C. Greubel, Generating functions
- Index entries for linear recurrences with constant coefficients, signature (715, -246246, 54441244, -8688122872, 1067021500896, -104995425911880, 8509695500071416, -579576260744202564, 33677542872235956572, -1689382985951061375584, 73851002736478171785480, -2834880964029477987484784, 96157307046055530022659296, -2897042624210196682636584168, 77864265942445209589091609880, -1873766333805076180258298532750, 40496615572103854298268667369290, -788076483208734925614168894880060, 13838951374046160498670120531900480, -219687004175759538500502785436424080, 3157288221085995379662504956708878000, -41129275275200013601737955696226964280, 486094673693240626024143992242097156520, -5215868577535025043910503669088440816660, 50836490264499322636673534370758109300396, -450178157479731675331980353762821217397840, 3622293207037319736887764557341829467018616, -26480103842294874673252984165092468826819824, 175815364714697377375288287523495537964680512, -1059685472384814743761882978983528331243780536, 5794006095745855069703806488744115029544310280, -28712845744794238874234856225294257655712864281, 128823074763417157330327450612996297705760524899, -522591702536253659265150517358362904804073702702, 1913877482958449061349927143878484707275902379044, -6316428749606413461495948122861485717837380579480, 18747314973123796053526567679937869016617533512144, -49921577593788411541183731318082844750585106215136, 118943703030207917584554870579506771381266070945088, -252783808588069216519093758900774170980091669600640, 477488323849250418683533669723998946360819532025600, -798356115352276242760013175029559061134250770240000, 1175928120255423597428632028457343135596494440320000, -1517382017920428119910882859627104065334963129600000, 1704039910436999395713170098091040014017105344000000, -1652387285823260958429823161445909045075804800000000, 1370326851226558633202522928960523884556128000000000, -960372144298001827617428397061627444681920000000000, 560220235705759309094565929790235607973120000000000, -266618977212745148402028435378503712537600000000000, 100714095994301538183255879386079220224000000000000, -29009478229516455744577541121897523200000000000000, 5977866876033168754616374301599948800000000000000, -783993082018895079509762803666944000000000000000, 49121618545275670528799969525760000000000000000).
-
[(&+[(-1)^j*Binomial(2*n+1, j)*Binomial(11-j, 2)^n: j in [0..9]]): n in [1..30]]; // G. C. Greubel, Sep 08 2022
-
With[{B=Binomial}, Table[Sum[(-1)^j*B[2n+1, j]*B[11-j, 2]^n, {j,0,9}], {n, 30}]] (* G. C. Greubel, Sep 08 2022 *)
-
def A151631(n): return sum((-1)^j*binomial(2*n+1, j)*binomial(11-j, 2)^n for j in (0..9))
[A151631(n) for n in (1..30)] # G. C. Greubel, Sep 08 2022