cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-24 of 24 results.

A182155 Integers of the form: 0/3 + 1/3 + 2/3 + 3/3 + 5/3 + 7/3 + 11/3 + 13/3 + 17/3 + ....

Original entry on oeis.org

0, 1, 2, 6, 14, 26, 66, 94, 147, 264, 663, 759, 916, 1089, 1213, 1343, 1554, 1706, 2113, 2473, 2661, 2861, 3069, 3285, 3513, 3747, 3989, 4497, 4763, 5039, 5323, 5911, 6217, 6527, 6849, 7179, 7690, 8227, 8790, 9566, 9966, 10995, 11423, 12076, 12974, 13438
Offset: 1

Views

Author

Gerasimov Sergey, Apr 15 2012

Keywords

Comments

Numbers k such that the sum of first n nonnegative noncomposite numbers is equal to 3k.

Examples

			1/3 + 2/3 = 1, 1/3 + 2/3 + 3/3 = 2, 1/3 + 2/3 + 3/3 + 5/3 + 7/3 = 6.
		

Crossrefs

Programs

  • Mathematica
    s = 1; t = {0}; Do[s = s + Prime[n]; If[Mod[s, 3] == 0, AppendTo[t, s/3]], {n, 200}]; t (* T. D. Noe, Apr 18 2012 *)
    Select[Accumulate[Join[{0,1/3},Prime[Range[200]]/3]],IntegerQ] (* Harvey P. Dale, Mar 06 2016 *)

Extensions

Definition corrected by Harvey P. Dale, Mar 06 2016

A193470 Square array A(n,k) (n>=1, k>=0) read by antidiagonals: A(n,0) = 0 and A(n,k) is the least integer > A(n,k-1) that can be expressed as a triangular number divided by n.

Original entry on oeis.org

0, 0, 1, 0, 3, 3, 0, 1, 5, 6, 0, 7, 2, 14, 10, 0, 2, 9, 5, 18, 15, 0, 1, 3, 30, 7, 33, 21, 0, 3, 6, 9, 34, 12, 39, 28, 0, 15, 4, 11, 11, 69, 15, 60, 36, 0, 4, 17, 13, 13, 21, 75, 22, 68, 45, 0, 1, 5, 62, 15, 20, 24, 124, 26, 95, 55, 0, 5, 12, 17, 66, 30, 35, 38, 132, 35, 105, 66
Offset: 1

Views

Author

Peter Luschny, Jul 27 2011

Keywords

Examples

			n\k  0   1   2    3    4     5     6     7
------------------------------------------
1 |  0   1   3    6   10    15    21    28    A000217
2 |  0   3   5   14   18    33    39    60    A074378
3 |  0   1   2    5    7    12    15    22    A001318
4 |  0   7   9   30   34    69    75   124    A154260
5 |  0   2   3    9   11    21    24    38    A057569
6 |  0   1   6   11   13    20    35    46    A154293
7 |  0   3   4   13   15    30    33    54    A057570
8 |  0  15  17   62   66   141   147   252    A157716
		

Crossrefs

Programs

  • Maple
    A193470_rect := proc(n,k) local j,i,L; L := NULL; j := 0; while nops([L]) < k do add(i/n, i=1..j); if type(%,integer) then L := L,% fi; j := j+1 od; L end:
    seq(print(A193470_rect(n, 12)),n = 1..8);
  • Mathematica
    a[, 0] = 0; a[n, k_] := a[n, k] = For[j = a[n, k-1]+1, True, j++, If[Reduce[m > 0 && j == m(m+1)/(2n), m, Integers] =!= False, Return[j]]]; Table[a[n-k, k], {n, 1, 12}, {k, 0, n-1}] // Flatten (* Jean-François Alcover, Nov 07 2016 *)

A287733 First differences of A069497.

Original entry on oeis.org

6, 30, 30, 12, 42, 90, 66, 24, 78, 150, 102, 36, 114, 210, 138, 48, 150, 270, 174, 60, 186, 330, 210, 72, 222, 390, 246, 84, 258, 450, 282, 96, 294, 510, 318, 108, 330, 570, 354, 120, 366, 630, 390, 132, 402, 690, 426, 144, 438, 750, 462, 156, 474, 810, 498, 168, 510, 870, 534
Offset: 1

Views

Author

Greg Huber, May 30 2017

Keywords

Comments

First differences of the subsequence of triangular numbers that are divisible by 6.
By definition, these numbers are themselves divisible by 6.

Examples

			The first triangular number divisible by 6 is 6, and the second triangular number divisible by 6 is 36.  Therefore a(2) = 36 - 6 = 30. (The zeroth triangular number divisible by 6 is taken to be 0.)
		

Crossrefs

Programs

  • Maple
    S:= [seq(seq((12*i+j)*(12*i+j+1)/2, j=[0,3,8,11]), i=0..50)]:
    S[2..-1]-S[1..-2]; # Robert Israel, May 30 2017
  • Mathematica
    Differences@ Select[Array[# (# + 1)/2 &, 180, 0], Mod[#, 6] == 0 &] (* Robert G. Wilson v, May 30 2017 *)
    Differences[Select[Accumulate[Range[0, 209]], Divisible[#, 6] &]] (* Alonso del Arte, May 31 2017 *)

Formula

G.f.: 6*(x^2+4*x+1)*(x^2-x+1)/((x-1)^2*(x^2+1)^2). - Robert Israel, May 30 2017

Extensions

More terms from Robert G. Wilson v, May 30 2017

A164619 Integers of the form A164577(k)/3.

Original entry on oeis.org

4, 15, 54, 75, 132, 169, 320, 459, 735, 847, 1104, 1250, 1764, 2175, 2904, 3179, 3780, 4107, 5200, 6027, 7425, 7935, 9024, 9604, 11492, 12879, 15162, 15979, 17700, 18605, 21504, 23595, 26979, 28175, 30672, 31974, 36100, 39039, 43740, 45387, 48804
Offset: 1

Views

Author

Keywords

Comments

The sequence members are the third of the average of a set of smallest cubes, if integer.

Examples

			A third of the average of the first cube, A164577(1)/3=1/3, is not an integer and does not contribute to the sequence.
A third of the average of the first two cubes, A164577(2)/3=4, is an integer and defines a(1)=4 of the sequence.
		

Crossrefs

Programs

  • Mathematica
    s=0;lst={};Do[a=(s+=(n^3)/3)/n;If[Mod[a,1]==0,AppendTo[lst,a]],{n,2*5!}]; lst
    LinearRecurrence[{2,-1,-1,2,-1,2,-4,2,2,-4,2,-1,2,-1,-1,2,-1},{4,15,54,75,132,169,320,459,735,847,1104,1250,1764,2175,2904,3179,3780},50] (* Harvey P. Dale, Apr 06 2016 *)
  • PARI
    Vec(x*(x^14 +x^13 +16*x^12 +10*x^11 +47*x^10 -22*x^9 +61*x^8 +10*x^7 +88*x^6 +8*x^5 +43*x^4 -14*x^3 +28*x^2 +7*x +4) / ((x -1)^4*(x +1)^3*(x^2 -x +1)^3*(x^2 +x +1)^2) + O(x^100)) \\ Colin Barker, Oct 27 2014

Formula

a(n) = +2*a(n-1) -a(n-2) -a(n-3) +2*a(n-4) -a(n-5) +2*a(n-6) -4*a(n-7) +2*a(n-8) +2*a(n-9) -4*a(n-10) +2*a(n-11) -a(n-12) +2*a(n-13) -a(n-14) -a(n-15) +2*a(n-16) -a(n-17). - R. J. Mathar, Jan 25 2011
G.f.: x*(x^14 +x^13 +16*x^12 +10*x^11 +47*x^10 -22*x^9 +61*x^8 +10*x^7 +88*x^6 +8*x^5 +43*x^4 -14*x^3 +28*x^2 +7*x +4) / ((x -1)^4*(x +1)^3*(x^2 -x +1)^3*(x^2 +x +1)^2). - Colin Barker, Oct 27 2014

Extensions

Edited by R. J. Mathar, Aug 20 2009
Previous Showing 21-24 of 24 results.