A166608
Number of reduced words of length n in Coxeter group on 22 generators S_i with relations (S_i)^2 = (S_i S_j)^12 = I.
Original entry on oeis.org
1, 22, 462, 9702, 203742, 4278582, 89850222, 1886854662, 39623947902, 832102905942, 17474161024782, 366957381520422, 7706105011928631, 161828205250496400, 3398392310260322760, 71366238515464643520
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, -210).
-
R:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+x)*(1-x^12)/(1 -21*x +230*x^12 -210*x^13) )); // G. C. Greubel, Apr 25 2019
-
CoefficientList[Series[(1+x)*(1-x^12)/(1 -21*x +230*x^12 -210*x^13), {x, 0, 20}], x] (* G. C. Greubel, May 18 2016, modified Apr 25 2019 *)
coxG[{12,210,-20}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Jul 20 2018 *)
-
my(x='x+O('x^20)); Vec((1+x)*(1-x^12)/(1 -21*x +230*x^12 -210*x^13)) \\ G. C. Greubel, Apr 25 2019
-
((1+x)*(1-x^12)/(1 -21*x +230*x^12 -210*x^13)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Apr 25 2019
A166610
Number of reduced words of length n in Coxeter group on 23 generators S_i with relations (S_i)^2 = (S_i S_j)^12 = I.
Original entry on oeis.org
1, 23, 506, 11132, 244904, 5387888, 118533536, 2607737792, 57370231424, 1262145091328, 27767192009216, 610878224202752, 13439320932460291, 295665060514120836, 6504631331310536193, 143101889288829107868
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, -231).
-
R:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+x)*(1-x^12)/(1-22*x+252*x^12-231*x^13) )); // G. C. Greubel, Apr 25 2019
-
coxG[{12,231,-21}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Feb 03 2015 *)
CoefficientList[Series[(1+x)*(1-x^12)/(1-22*x+252*x^12-231*x^13), {x, 0, 20}], x] (* G. C. Greubel, May 18 2016, modified Apr 25 2019 *)
-
my(x='x+O('x^20)); Vec((1+x)*(1-x^12)/(1-22*x+252*x^12-231*x^13)) \\ G. C. Greubel, Apr 25 2019
-
((1+x)*(1-x^12)/(1-22*x+252*x^12-231*x^13)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Apr 25 2019
A167882
Number of reduced words of length n in Coxeter group on 4 generators S_i with relations (S_i)^2 = (S_i S_j)^16 = I.
Original entry on oeis.org
1, 4, 12, 36, 108, 324, 972, 2916, 8748, 26244, 78732, 236196, 708588, 2125764, 6377292, 19131876, 57395622, 172186848, 516560496, 1549681344, 4649043600, 13947129504, 41841384624, 125524142208, 376572391632, 1129717069920
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,-3).
-
R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1+x)*(1-x^16)/(1-3*x+5*x^16-3*x^17) )); // G. C. Greubel, Dec 06 2024
-
CoefficientList[Series[(1+t)*(1-t^16)/(1-3*t+5*t^16-3*t^17), {t,0,50}], t] (* G. C. Greubel, Jun 29 2016; Dec 06 2024 *)
coxG[{16,3,-2}] (* The coxG program is at A169452 *) (* G. C. Greubel, Dec 06 2024 *)
-
def A167882_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( (1+x)*(1-x^16)/(1-3*x+5*x^16-3*x^17) ).list()
print(A167882_list(40)) # G. C. Greubel, Dec 06 2024
A167896
Number of reduced words of length n in Coxeter group on 5 generators S_i with relations (S_i)^2 = (S_i S_j)^16 = I.
Original entry on oeis.org
1, 5, 20, 80, 320, 1280, 5120, 20480, 81920, 327680, 1310720, 5242880, 20971520, 83886080, 335544320, 1342177280, 5368709110, 21474836400, 85899345450, 343597381200, 1374389522400, 5497558080000, 21990232281600, 87960928972800
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,-6).
-
R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1+x)*(1-x^16)/(1-4*x+9*x^16-6*x^17) )); // G. C. Greubel, Dec 06 2024
-
CoefficientList[Series[(1+t)*(1-t^16)/(1-4*t+9*t^16-6*t^17), {t,0,50}], t] (* G. C. Greubel, Jul 01 2016; Dec 06 2024 *)
coxG[{16,6,-3,40}] (* The coxG program is at A169452 *) (* G. C. Greubel, Dec 06 2024 *)
-
def A167896_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( (1+x)*(1-x^16)/(1-4*x+9*x^16-6*x^17) ).list()
print(A167896_list(40)) # G. C. Greubel, Dec 06 2024
A167900
Number of reduced words of length n in Coxeter group on 9 generators S_i with relations (S_i)^2 = (S_i S_j)^16 = I.
Original entry on oeis.org
1, 9, 72, 576, 4608, 36864, 294912, 2359296, 18874368, 150994944, 1207959552, 9663676416, 77309411328, 618475290624, 4947802324992, 39582418599936, 316659348799452, 2533274790395328, 20266198323160356, 162129586585264704
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,-28).
-
R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1+x)*(1-x^16)/(1-8*x+35*x^16-28*x^17) )); // G. C. Greubel, Dec 06 2024
-
CoefficientList[Series[(1+t)*(1-t^16)/(1-8*t+35*t^16-28*t^17), {t,0,50}], t] (* G. C. Greubel, Jul 01 2016; Dec 06 2024 *)
coxG[{16,28,-7}] (* The coxG program is at A169452 *) (* G. C. Greubel, Dec 06 2024 *)
-
def A167900_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( (1+x)*(1-x^16)/(1-8*x+35*x^16-28*x^17) ).list()
print(A167900_list(40)) # G. C. Greubel, Dec 06 2024
A167908
Number of reduced words of length n in Coxeter group on 10 generators S_i with relations (S_i)^2 = (S_i S_j)^16 = I.
Original entry on oeis.org
1, 10, 90, 810, 7290, 65610, 590490, 5314410, 47829690, 430467210, 3874204890, 34867844010, 313810596090, 2824295364810, 25418658283290, 228767924549610, 2058911320946445, 18530201888517600, 166771816996654800
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,-36).
-
R:=PowerSeriesRing(Integers(), 30);
Coefficients(R!( (1+x)*(1-x^16)/(1-9*x+44*x^16-36*x^17) )); // G. C. Greubel, Jul 23 2024
-
With[{a=36, b=8}, CoefficientList[Series[(1+t)*(1-t^16)/(1-(b+1)*t +(a + b)*t^16 -a*t^17), {t,0,40}], t]] (* G. C. Greubel, Jul 01 2016; Jul 23 2024 *)
coxG[{16,36,-8}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Jun 04 2017 *)
-
def A167908_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( (1+x)*(1-x^16)/(1-9*x+44*x^16-36*x^17) ).list()
A167908_list(30) # G. C. Greubel, Jul 23 2024
A167914
Number of reduced words of length n in Coxeter group on 11 generators S_i with relations (S_i)^2 = (S_i S_j)^16 = I.
Original entry on oeis.org
1, 11, 110, 1100, 11000, 110000, 1100000, 11000000, 110000000, 1100000000, 11000000000, 110000000000, 1100000000000, 11000000000000, 110000000000000, 1100000000000000, 10999999999999945, 109999999999998900
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,-45).
-
R:=PowerSeriesRing(Integers(), 40);
Coefficients(R!( (1+x)*(1-x^16)/(1-10*x+54*x^16-45*x^17) )); // G. C. Greubel, Dec 04 2024
-
CoefficientList[Series[(1+t)*(1-t^16)/(1-10*t+54*t^16-45*t^17), {t,0,50}], t] (* G. C. Greubel, Jul 01 2016; Dec 04 2024 *)
coxG[{16,45,-9}] (* The coxG program is at A169452 *) (* G. C. Greubel, Dec 04 2024 *)
-
def A167914_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( (1+x)*(1-x^16)/(1-10*x+54*x^16-45*x^17) ).list()
A167914_list(40) # G. C. Greubel, Dec 04 2024
A167916
Number of reduced words of length n in Coxeter group on 12 generators S_i with relations (S_i)^2 = (S_i S_j)^16 = I.
Original entry on oeis.org
1, 12, 132, 1452, 15972, 175692, 1932612, 21258732, 233846052, 2572306572, 28295372292, 311249095212, 3423740047332, 37661140520652, 414272545727172, 4556998002998892, 50126978032987746, 551396758362864480
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,-55).
-
R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1+x)*(1-x^16)/(1-11*x+65*x^16-55*x^17) )); // G. C. Greubel, Nov 10 2023
-
CoefficientList[Series[(1+t)*(1-t^16)/(1-11*t+65*t^16-55*t^17), {t,0,50}], t] (* G. C. Greubel, Jul 01 2016; Nov 10 2023 *)
coxG[{16,55,-10}] (* The coxG program is at A169452 *) (* G. C. Greubel, Nov 10 2023 *)
-
def A167916_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( (1+x)*(1-x^16)/(1-11*x+65*x^16-55*x^17) ).list()
A167916_list(30) # G. C. Greubel, Nov 10 2023
A167923
Number of reduced words of length n in Coxeter group on 15 generators S_i with relations (S_i)^2 = (S_i S_j)^16 = I.
Original entry on oeis.org
1, 15, 210, 2940, 41160, 576240, 8067360, 112943040, 1581202560, 22136835840, 309915701760, 4338819824640, 60743477544960, 850408685629440, 11905721598812160, 166680102383370240, 2333521433367183255
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,-91).
-
R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1+x)*(1-x^16)/(1-14*x+104*x^16-91*x^17) )); // G. C. Greubel, Sep 10 2023
-
CoefficientList[Series[(1+t)*(1-t^16)/(1-14*t+104*t^16-91*t^17), {t, 0, 50}], t] (* G. C. Greubel, Jul 01 2016; Sep 10 2023 *)
coxG[{16,91,-13}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Aug 22 2020 *)
-
def A167955_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( (1+x)*(1-x^16)/(1-14*x+104*x^16-91*x^17) ).list()
A167955_list(40) # G. C. Greubel, Sep 10 2023
A167924
Number of reduced words of length n in Coxeter group on 16 generators S_i with relations (S_i)^2 = (S_i S_j)^16 = I.
Original entry on oeis.org
1, 16, 240, 3600, 54000, 810000, 12150000, 182250000, 2733750000, 41006250000, 615093750000, 9226406250000, 138396093750000, 2075941406250000, 31139121093750000, 467086816406250000, 7006302246093749880
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,-105).
-
R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1+x)*(1-x^16)/(1-15*x+119*x^16-105*x^17) )); // G. C. Greubel, Sep 10 2023
-
CoefficientList[Series[(1+t)*(1-t^16)/(1-15*t+119*t^16-105*t^17), {t, 0, 50}], t] (* G. C. Greubel, Jul 01 2016; Sep 10 2023 *)
coxG[{16,105,-14}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Jul 10 2017 *)
-
def A167924_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( (1+x)*(1-x^16)/(1-15*x+119*x^16-105*x^17) ).list()
A167924_list(40) # G. C. Greubel, Sep 10 2023
Comments