cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 2314 results. Next

A162983 Number of reduced words of length n in Coxeter group on 10 generators S_i with relations (S_i)^2 = (S_i S_j)^4 = I.

Original entry on oeis.org

1, 10, 90, 810, 7245, 64800, 579600, 5184000, 46366380, 414707040, 3709193760, 33175513440, 296726124240, 2653957198080, 23737339710720, 212309865780480, 1898927161041600, 16984252473131520, 151909371770042880
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A003952, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • GAP
    a:=[10,90,810,7245];; for n in [5..20] do a[n]:=8*(a[n-1]+a[n-2] +a[n-3]) - 36*a[n-4]; od; Concatenation([1], a); # G. C. Greubel, Apr 28 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+x)*(1-x^4)/(1-9*x+44*x^4-36*x^5) )); // G. C. Greubel, Apr 28 2019
    
  • Mathematica
    CoefficientList[Series[(1+x)*(1-x^4)/(1-9*x+44*x^4-36*x^5), {x,0,20}], x]
    (* or *) coxG[{4, 36, -8}] (* The coxG program is at A169452 *) (* G. C. Greubel, Apr 28 2019 *)
  • PARI
    my(x='x+O('x^20)); Vec((1+x)*(1-x^4)/(1-9*x+44*x^4-36*x^5)) \\ G. C. Greubel, Apr 28 2019
    
  • Sage
    ((1+x)*(1-x^4)/(1-9*x+44*x^4-36*x^5)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Apr 28 2019
    

Formula

G.f.: (t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(36*t^4 - 8*t^3 - 8*t^2 - 8*t + 1).
From G. C. Greubel, Apr 28 2019: (Start)
a(n) = 8*(a(n-1) + a(n-2) + a(n-3)) - 36*a(n-4).
G.f.: (1+x)*(1-x^4)/(1 - 9*x + 44*x^4 - 36*x^5). (End)

A162987 Number of reduced words of length n in Coxeter group on 11 generators S_i with relations (S_i)^2 = (S_i S_j)^4 = I.

Original entry on oeis.org

1, 11, 110, 1100, 10945, 108900, 1083555, 10781100, 107269470, 1067306625, 10619454780, 105661128375, 1051303881870, 10460231387100, 104076892111005, 1035541095642900, 10303395297584895, 102516409155629700, 1020014649794722230, 10148910738927500925
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A003953, although the two sequences are eventually different.
Computed with Magma using commands similar to those used to compute A154638.

Programs

  • GAP
    a:=[11,110,1100,10945];; for n in [5..20] do a[n]:=9*(a[n-1]+a[n-2] +a[n-3] -5*a[n-4]); od; Concatenation([1], a); # G. C. Greubel, Apr 28 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+x)*(1-x^4)/(1-10*x+54*x^4-45*x^5) )); // G. C. Greubel, Apr 28 2019
    
  • Mathematica
    CoefficientList[Series[(1+x)*(1-x^4)/(1-10*x+54*x^4-45*x^5), {x,0,20}], x] (* or *) coxG[{4, 45, -9}] (* The coxG program is at A169452 *) (* G. C. Greubel, Apr 28 2019 *)
  • PARI
    my(x='x+O('x^20)); Vec((1+x)*(1-x^4)/(1-10*x+54*x^4-45*x^5)) \\ G. C. Greubel, Apr 28 2019
    
  • Sage
    ((1+x)*(1-x^4)/(1-10*x+54*x^4-45*x^5)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Apr 28 2019
    

Formula

G.f.: (t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(45*t^4 - 9*t^3 - 9*t^2 - 9*t + 1).
From G. C. Greubel, Apr 28 2019: (Start)
a(n) = 9*(a(n-1) + a(n-2) + a(n-3) - 5*a(n-4)).
G.f.: (1+x)*(1-x^4)/(1 - 10*x + 54*x^4 - 45*x^5). (End)

A163962 Number of reduced words of length n in Coxeter group on 15 generators S_i with relations (S_i)^2 = (S_i S_j)^6 = I.

Original entry on oeis.org

1, 15, 210, 2940, 41160, 576240, 8067255, 112940100, 1581140925, 22135686300, 309895595100, 4338482148000, 60737963515320, 850320477564285, 11904332524792890, 166658497119549435, 2333188744879254990
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170734, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+x)*(1-x^6)/(1-14*x+104*x^6-91*x^7) )); // G. C. Greubel, Apr 25 2019
    
  • Mathematica
    CoefficientList[Series[(1+x)*(1-x^6)/(1-14*x+104*x^6-91*x^7), {x, 0, 20}], x] (* G. C. Greubel, Aug 13 2017, modified Apr 25 2019 *)
  • PARI
    my(x='x+O('x^20)); Vec((1+x)*(1-x^6)/(1-14*x+104*x^6-91*x^7)) \\ G. C. Greubel, Aug 13 2017, modified Apr 25 2019
    
  • Sage
    ((1+x)*(1-x^6)/(1-14*x+104*x^6-91*x^7)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Apr 25 2019

Formula

G.f.: (t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(91*t^6 - 13*t^5 - 13*t^4 - 13*t^3 - 13*t^2 - 13*t + 1).
G.f.: (1+x)*(1-x^6)/(1 -14*x +104*x^6 -91*x^7). - G. C. Greubel, Apr 25 2019

A163988 Number of reduced words of length n in Coxeter group on 22 generators S_i with relations (S_i)^2 = (S_i S_j)^6 = I.

Original entry on oeis.org

1, 22, 462, 9702, 203742, 4278582, 89849991, 1886844960, 39623642520, 832094358480, 17473936704840, 366951729513600, 7705966552789890, 161824882502745000, 3398313815357307000, 71364407061765925800
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170741, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+x)*(1-x^6)/(1-21*x+230*x^6-210*x^7) )); // G. C. Greubel, Apr 25 2019
    
  • Mathematica
    CoefficientList[Series[(1+x)*(1-x^6)/(1-21*x+230*x^6-210*x^7), {x,0,20}], x] (* G. C. Greubel, Aug 24 2017 *)
    coxG[{6, 210, -20, 20}] (* The coxG program is at A169452 *)
  • PARI
    my(x='x+O('x^20)); Vec((1+x)*(1-x^6)/(1-21*x+230*x^6-210*x^7)) \\ G. C. Greubel, Aug 24 2017, modified Apr 25 2019
    
  • Sage
    ((1+x)*(1-x^6)/(1-21*x+230*x^6-210*x^7)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Apr 25 2019

Formula

G.f.: (t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(210*t^6 - 20*t^5 - 20*t^4 - 20*t^3 - 20*t^2 - 20*t + 1).
G.f.: (1+x)*(1-x^6)/(1 -21*x +230*x^6 -210*x^7). - G. C. Greubel, Apr 25 2019

A163991 Number of reduced words of length n in Coxeter group on 23 generators S_i with relations (S_i)^2 = (S_i S_j)^6 = I.

Original entry on oeis.org

1, 23, 506, 11132, 244904, 5387888, 118533283, 2607726660, 57369864321, 1262134326684, 27766896042732, 610870411765152, 13439120433048156, 295660019761129485, 6504506579923898238, 143098839952914095019, 3148167773259336785958, 69259543486514630343864
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170742, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+x)*(1-x^6)/(1-22*x+252*x^6-231*x^7) )); // G. C. Greubel, Apr 25 2019
    
  • Mathematica
    CoefficientList[Series[(1+x)*(1-x^6)/(1-22*x+252*x^6-231*x^7), {x,0,20}], x] (* G. C. Greubel, Aug 24 2017, modified Apr 25 2019 *)
    coxG[{6, 231, -21}] (* The coxG program is at A169452 *) (* G. C. Greubel, Apr 25 2019 *)
  • PARI
    my(x='x+O('x^20)); Vec((1+x)*(1-x^6)/(1-22*x+252*x^6-231*x^7)) \\ G. C. Greubel, Aug 24 2017, modified Apr 25 2019
    
  • Sage
    ((1+x)*(1-x^6)/(1-22*x+252*x^6-231*x^7)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Apr 25 2019

Formula

G.f.: (t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(231*t^6 - 21*t^5 - 21*t^4 - 21*t^3 - 21*t^2 - 21*t + 1).
G.f.: (1+x)*(1-x^6)/(1 -22*x +252*x^6 -231*x^7). - G. C. Greubel, Apr 25 2019

A164330 Number of reduced words of length n in Coxeter group on 45 generators S_i with relations (S_i)^2 = (S_i S_j)^6 = I.

Original entry on oeis.org

1, 45, 1980, 87120, 3833280, 168664320, 7421229090, 326534036400, 14367495685950, 632169725893200, 27815464230602400, 1223880262963776000, 53850724390367020710, 2369431557254469630780, 104254974618644628784170
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170764, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+x)*(1-x^6)/(1-44*x+989*x^6-946*x^7) )); // G. C. Greubel, Apr 25 2019
    
  • Mathematica
    CoefficientList[Series[(1+x)*(1-x^6)/(1-44*x+989*x^6-946*x^7), {x,0,20}], x] (* G. C. Greubel, Sep 14 2017, modified Apr 25 2019 *)
    coxG[{6, 946, -43}] (* The coxG program is at A169452 *) (* G. C. Greubel, Apr 25 2019 *)
  • PARI
    my(x='x+O('x^20)); Vec((1+x)*(1-x^6)/(1-44*x+989*x^6-946*x^7)) \\ G. C. Greubel, Sep 14 2017, modified Apr 25 2019
    
  • Sage
    ((1+x)*(1-x^6)/(1-44*x+989*x^6-946*x^7)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Apr 25 2019

Formula

G.f.: (t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(946*t^6 - 43*t^5 - 43*t^4 - 43*t^3 - 43*t^2 - 43*t + 1).
G.f.: (1+x)*(1-x^6)/(1 -44*x +989*x^6 -946*x^7). - G. C. Greubel, Apr 25 2019
a(n) = -946*a(n-6) + 43*Sum_{k=1..5} a(n-k). - Wesley Ivan Hurt, May 06 2021

A164332 Number of reduced words of length n in Coxeter group on 47 generators S_i with relations (S_i)^2 = (S_i S_j)^6 = I.

Original entry on oeis.org

1, 47, 2162, 99452, 4574792, 210440432, 9680258791, 445291854660, 20483423028045, 942237354119580, 43342913451658140, 1993773796235517600, 91713584389960162440, 4218824411042032288125, 194065901246713684538250
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170766, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+x)*(1-x^6)/(1-46*x+1080*x^6-1035*x^7) )); // G. C. Greubel, Apr 25 2019
    
  • Mathematica
    CoefficientList[Series[(1+x)*(1-x^6)/(1-46*x+1080*x^6-1035*x^7), {x, 0, 20}], x] (* G. C. Greubel, Sep 14 2017, modified Apr 25 2019 *)
    coxG[{6, 1035, -45}] (* The coxG program is at A169452 *) (* G. C. Greubel, Apr 25 2019 *)
  • PARI
    my(x='x+O('x^20)); Vec((1+x)*(1-x^6)/(1-46*x+1080*x^6-1035*x^7)) \\ G. C. Greubel, Sep 14 2017, modified Apr 25 2019
    
  • Sage
    ((1+x)*(1-x^6)/(1-46*x+1080*x^6-1035*x^7)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Apr 25 2019

Formula

G.f.: (t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(1035*t^6 - 45*t^5 - 45*t^4 - 45*t^3 - 45*t^2 - 45*t + 1).
G.f.: (1+x)*(1-x^6)/(1 -46*x +1080*x^6 -1035*x^7). - G. C. Greubel, Apr 25 2019
a(n) = -1035*a(n-6) + 45*Sum_{k=1..5} a(n-k). - Wesley Ivan Hurt, May 06 2021

A164348 Number of reduced words of length n in Coxeter group on 48 generators S_i with relations (S_i)^2 = (S_i S_j)^6 = I.

Original entry on oeis.org

1, 48, 2256, 106032, 4983504, 234224688, 11008559208, 517402229760, 24317902308096, 1142941291421184, 53718235195007232, 2524756795581284352, 118663557238871024856, 5577186619014877732560, 262127744246735162576688
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170767, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • GAP
    a:=[48, 2256, 106032, 4983504, 234224688, 11008559208];; for n in [7..20] do a[n]:=46*(a[n-1] +a[n-2]+a[n-3]+a[n-4]+a[n-5]) -1081*a[n-6]; od; Concatenation([1], a); # G. C. Greubel, Aug 24 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+t)*(1-t^6)/(1-47*t+1127*t^6-1081*t^7) )); // G. C. Greubel, Aug 24 2019
    
  • Maple
    seq(coeff(series((1+t)*(1-t^6)/(1-47*t+1127*t^6-1081*t^7), t, n+1), t, n), n = 0..20); # G. C. Greubel, Aug 24 2019
  • Mathematica
    CoefficientList[Series[(1+t)*(1-t^6)/(1-47*t+1127*t^6-1081*t^7), {t, 0, 20}], t] (* G. C. Greubel, Sep 15 2017 *)
    coxG[{6, 1081, -46}] (* The coxG program is at A169452 *) (* G. C. Greubel, Aug 24 2019 *)
  • PARI
    my(t='t+O('t^20)); Vec((1+t)*(1-t^6)/(1-47*t+1127*t^6-1081*t^7)) \\ G. C. Greubel, Sep 15 2017
    
  • Sage
    def A164348_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P((1+t)*(1-t^6)/(1-47*t+1127*t^6-1081*t^7)).list()
    A164348_list(20) # G. C. Greubel, Aug 24 2019
    

Formula

G.f.: (t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(1081*t^6 - 46*t^5 - 46*t^4 - 46*t^3 - 46*t^2 - 46*t + 1).
a(n) = -1081*a(n-6) + 46*Sum_{k=1..5} a(n-k). - Wesley Ivan Hurt, May 07 2021

A164369 Number of reduced words of length n in Coxeter group on 7 generators S_i with relations (S_i)^2 = (S_i S_j)^7 = I.

Original entry on oeis.org

1, 7, 42, 252, 1512, 9072, 54432, 326571, 1959300, 11755065, 70525980, 423129420, 2538617760, 15230754000, 91378809060, 548238566925, 3289225689750, 19734119944875, 118397314970550, 710339464409400, 4261770250642800
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A003949, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1+x)*(1-x^7)/(1-6*x+20*x^7-15*x^8) )); // G. C. Greubel, Apr 25 2019
    
  • Mathematica
    CoefficientList[Series[(1+x)*(1-x^7)/(1-6*x+20*x^7-15*x^8), {x, 0, 30}], x] (* G. C. Greubel, Sep 17 2017, modified Apr 25 2019 *)
    coxG[{7, 15, -5, 30}] (* The coxG program is at A169452 *) (* G. C. Greubel, Apr 25 2019 *)
  • PARI
    my(x='x+O('x^30)); Vec((1+x)*(1-x^7)/(1-6*x+20*x^7-15*x^8)) \\ G. C. Greubel, Sep 17 2017, modified Apr 25 2019
    
  • Sage
    ((1+x)*(1-x^7)/(1-6*x+20*x^7-15*x^8)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Apr 25 2019

Formula

G.f.: (t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(15*t^7 - 5*t^6 - 5*t^5 - 5*t^4 - 5*t^3 - 5*t^2 - 5*t + 1).
G.f.: (1+x)*(1-x^7)/(1 -6*x +20*x^7 -15*x^8). - G. C. Greubel, Apr 25 2019

A164664 Number of reduced words of length n in Coxeter group on 28 generators S_i with relations (S_i)^2 = (S_i S_j)^7 = I.

Original entry on oeis.org

1, 28, 756, 20412, 551124, 14880348, 401769396, 10847773314, 292889869272, 7908026195160, 213516699839352, 5764950695053368, 155653663349994264, 4202648764205784984, 113471512684966713186, 3063730735882188973692
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170747, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Crossrefs

Programs

  • GAP
    a:=[28,756,20412,551124,14880348,401769396,10847773314];; for n in [8..30] do a[n]:=26*(a[n-1] +a[n-2]+a[n-3]+a[n-4]+a[n-5]+a[n-6]) -351*a[n-7]; od; Concatenation([1], a); # G. C. Greubel, Sep 15 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+t)*(1-t^7)/(1-27*t+377*t^7-351*t^8) )); // G. C. Greubel, Sep 15 2019
    
  • Maple
    seq(coeff(series((1+t)*(1-t^7)/(1-27*t+377*t^7-351*t^8), t, n+1), t, n), n = 0 .. 30); # G. C. Greubel, Sep 15 2019
  • Mathematica
    CoefficientList[Series[(t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(351*t^7 - 26*t^6 - 26*t^5 - 26*t^4 - 26*t^3 - 26*t^2 - 26*t + 1), {t, 0, 20}], t] (* Wesley Ivan Hurt, Apr 25 2017 *)
    coxG[{7,351,-26}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Aug 13 2018 *)
  • PARI
    my(t='t+O('t^20)); Vec((1+t)*(1-t^7)/(1-27*t+377*t^7-351*t^8)) \\ G. C. Greubel, Sep 15 2019
    
  • Sage
    def A164664_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P((1+t)*(1-t^7)/(1-27*t+377*t^7-351*t^8)).list()
    A164664_list(20) # G. C. Greubel, Sep 15 2019
    

Formula

G.f.: (t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(351*t^7 - 26*t^6 - 26*t^5 - 26*t^4 - 26*t^3 - 26*t^2 - 26*t + 1).
Previous Showing 51-60 of 2314 results. Next