A163217
Number of reduced words of length n in Coxeter group on 34 generators S_i with relations (S_i)^2 = (S_i S_j)^4 = I.
Original entry on oeis.org
1, 34, 1122, 37026, 1221297, 40284288, 1328771136, 43829305344, 1445702699760, 47686274735616, 1572924224543232, 51882656590093824, 1711341215834452224, 56448319139710451712, 1861938872397761101824, 61415759005426222645248
Offset: 0
-
a:=[34,1122,37026,1221297];; for n in [5..20] do a[n]:=32*(a[n-1]+ a[n-2]+a[n-3]) -528*a[n-4]; od; Concatenation([1], a); # G. C. Greubel, Apr 28 2019
-
R:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+x)*(1-x^4)/(1-33*x+560*x^4-528*x^5) )); // G. C. Greubel, Apr 28 2019
-
CoefficientList[Series[(t^4+2*t^3+2*t^2+2*t+1)/(528*t^4-32*t^3-32*t^2 - 32*t+1), {t,0,20}], t] (* or *)
LinearRecurrence[{32, 32, 32, -528}, {1, 34, 1122, 37026, 1221297}, 20] (* G. C. Greubel, Dec 11 2016; simplified by Georg Fischer, Apr 08 2019 *)
coxG[{4,528,-32}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Jul 06 2018 *)
-
my(x='x+O('x^20)); Vec((1+x)*(1-x^4)/(1-33*x+560*x^4-528*x^5)) \\ G. C. Greubel, Dec 11 2016, modified Apr 28 2019
-
((1+x)*(1-x^4)/(1-33*x+560*x^4-528*x^5)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Apr 28 2019
A163218
Number of reduced words of length n in Coxeter group on 35 generators S_i with relations (S_i)^2 = (S_i S_j)^4 = I.
Original entry on oeis.org
1, 35, 1190, 40460, 1375045, 46731300, 1588176975, 53974651500, 1834344072330, 62340711467265, 2118667029023160, 72003509011079415, 2447059985777227590, 83164038200838759780, 2826353783752411211145, 96054447135432681999180
Offset: 0
-
R:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+x)*(1-x^4)/(1-34*x+594*x^4-x^561*x^5) )); // G. C. Greubel, Apr 30 2019
-
CoefficientList[Series[(t^4+2*t^3+2*t^2+2*t+1)/(561*t^4-33*t^3-33*t^2 - 33*t+1), {t,0,20}], t] (* or *) LinearRecurrence[{33, 33, 33, -561}, {1, 35, 1190, 40460}, 20] (* G. C. Greubel, Dec 11 2016 *)
coxG[{4, 561, -33}] (* The coxG program is at A169452 *) (* G. C. Greubel, Apr 30 2019 *)
-
my(t='t+O('t^20)); Vec((t^4+2*t^3+2*t^2+2*t+1)/(561*t^4-33*t^3 - 33*t^2-33*t+1)) \\ G. C. Greubel, Dec 11 2016
-
((1+x)*(1-x^4)/(1-34*x+594*x^4-561*x^5)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Apr 30 2019
A163219
Number of reduced words of length n in Coxeter group on 36 generators S_i with relations (S_i)^2 = (S_i S_j)^4 = I.
Original entry on oeis.org
1, 36, 1260, 44100, 1542870, 53978400, 1888472880, 66069561600, 2311490430270, 80869130653500, 2829263840578980, 98983800307381500, 3463018394666864670, 121156152466965222600, 4238733846520797445080, 148295107229819712107400
Offset: 0
-
R:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+x)*(1-x^4)/(1-35*x+629*x^4-595*x^5) )); // G. C. Greubel, Apr 30 2019
-
CoefficientList[Series[(t^4+2*t^3+2*t^2+2*t+1)/(595*t^4-34*t^3-34*t^2 - 34*t+1), {t, 0, 20}], t] (* or *) Join[{1}, LinearRecurrence[{34, 34, 34, -595}, {36, 1260, 44100, 1542870}, 20]] (* G. C. Greubel, Dec 11 2016 *)
coxG[{4, 595, -34}] (* The coxG program is at A169452 *) (* G. C. Greubel, Apr 30 2019 *)
-
my(t='t+O('t^20)); Vec((t^4+2*t^3+2*t^2+2*t+1)/(595*t^4-34*t^3 - 34*t^2-34*t+1)) \\ G. C. Greubel, Dec 11 2016
-
((1+x)*(1-x^4)/(1-35*x+629*x^4-595*x^5)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Apr 30 2019
A163220
Number of reduced words of length n in Coxeter group on 37 generators S_i with relations (S_i)^2 = (S_i S_j)^4 = I.
Original entry on oeis.org
1, 37, 1332, 47952, 1725606, 62097840, 2234659770, 80416702800, 2893883982570, 104139615440700, 3747579228757350, 134860782963557700, 4853114416362432150, 174644689291688511000, 6284782282271390399250
Offset: 0
-
R:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+x)*(1-x^4)/(1-36*x+665*x^4-630*x^5) )); // G. C. Greubel, Apr 30 2019
-
CoefficientList[Series[(t^4+2*t^3+2*t^2+2*t+1)/(630*t^4-35*t^3-35*t^2 - 35*t+1), {t,0,20}], t] (* or *) LinearRecurrence[{35, 35, 35, -630}, {1, 37, 1332, 47952}, 20] (* G. C. Greubel, Dec 11 2016 *)
coxG[{4, 630, -35}] (* The coxG program is at A169452 *) (* G. C. Greubel, Apr 30 2019 *)
-
my(t='t+O('t^20)); Vec((t^4+2*t^3+2*t^2+2*t+1)/(630*t^4-35*t^3 - 35*t^2-35*t+1)) \\ G. C. Greubel, Dec 11 2016
-
((1+x)*(1-x^4)/(1-36*x+665*x^4-630*x^5)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Apr 30 2019
A163221
Number of reduced words of length n in Coxeter group on 38 generators S_i with relations (S_i)^2 = (S_i S_j)^4 = I.
Original entry on oeis.org
1, 38, 1406, 52022, 1924111, 71166096, 2632183848, 97355219328, 3600827035866, 133181923185576, 4925930761424952, 182192847843197736, 6738672428195210748, 249239784283952410080, 9218502714272560450272
Offset: 0
-
a:=[38,1406,52022,1924111];; for n in [5..20] do a[n]:=36*(a[n-1]+ a[n-2]+a[n-3]) -666*a[n-4]; od; Concatenation([1], a); # G. C. Greubel, May 01 2019
-
R:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+x)*(1-x^4)/(1-37*x+702*x^4-666*x^5) )); // G. C. Greubel, May 01 2019
-
coxG[{4,666,-36}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Jul 09 2015 *)
CoefficientList[Series[(t^4+2*t^3+2*t^2+2*t+1)/(666*t^4-36*t^3-36*t^2 - 36*t+1), {t,0,20}], t] (* or *) LinearRecurrence[{36, 36, 36, -666}, {1, 38, 1406, 52022, 1924111}, 20] (* G. C. Greubel, Dec 11 2016; modified by Georg Fischer, Apr 08 2019 *)
-
my(t='t+O('t^20)); Vec((t^4+2*t^3+2*t^2+2*t+1)/(666*t^4-36*t^3 - 36*t^2-36*t+1)) \\ G. C. Greubel, Dec 11 2016
-
((1+x)*(1-x^4)/(1-37*x+702*x^4-666*x^5)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, May 01 2019
A163222
Number of reduced words of length n in Coxeter group on 39 generators S_i with relations (S_i)^2 = (S_i S_j)^4 = I.
Original entry on oeis.org
1, 39, 1482, 56316, 2139267, 81263988, 3086962281, 117263934684, 4454486050560, 169211838474861, 6427822638540342, 244172655087350379, 9275347010187982854, 352341101130365494992, 13384324210123816783899
Offset: 0
-
R:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+x)*(1-x^4)/(1-38*x+740*x^4-703*x^5) )); // G. C. Greubel, Apr 30 2019
-
CoefficientList[Series[(t^4+2*t^3+2*t^2+2*t+1)/(703*t^4-37*t^3-37*t^2 - 37*t+1), {t,0,20}], t] (* or *) Join[{1}, LinearRecurrence[{37, 37, 37, -703}, {39, 1482, 56316, 2139267}, 20]] (* G. C. Greubel, Dec 11 2016 *)
coxG[{4, 703, -37}] (* The coxG program is at A169452 *) (* G. C. Greubel, Apr 30 2019 *)
-
my(t='t+O('t^20)); Vec((t^4+2*t^3+2*t^2+2*t+1)/(703*t^4-37*t^3 - 37*t^2-37*t+1)) \\ G. c. Greubel, Dec 11 2016
-
((1+x)*(1-x^4)/(1-38*x+740*x^4-703*x^5)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Apr 30 2019
A163223
Number of reduced words of length n in Coxeter group on 40 generators S_i with relations (S_i)^2 = (S_i S_j)^4 = I.
Original entry on oeis.org
1, 40, 1560, 60840, 2371980, 92476800, 3605409600, 140564736000, 5480222014020, 213658376756760, 8329936604744040, 324760699264187160, 12661502336823753660, 493636212105145265520, 19245481572342746507280
Offset: 0
-
R:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+x)*(1-x^4)/(1-39*x+779*x^4-741*x^5) )); // G. C. Greubel, Apr 30 2019
-
CoefficientList[Series[(t^4+2*t^3+2*t^2+2*t+1)/(741*t^4-38*t^3-38*t^2 - 38*t+1), {t, 0, 20}], t] (* or *) LinearRecurrence[{38, 38, 38, -741}, {1, 40, 1560, 60840, 2371980}, 20] (* G. C. Greubel, Dec 11 2016 *)
coxG[{4, 741, -38}] (* The coxG program is at A169452 *) (* G. C. Greubel, Apr 30 2019 *)
-
my(t='t+O('t^20)); Vec((t^4+2*t^3+2*t^2+2*t+1)/(741*t^4- 38*t^3 -38*t^2-38*t+1)) \\ G. C. Greubel, Dec 11 2016
-
((1+x)*(1-x^4)/(1-39*x+779*x^4-741*x^5)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Apr 30 2019
A163224
Number of reduced words of length n in Coxeter group on 41 generators S_i with relations (S_i)^2 = (S_i S_j)^4 = I.
Original entry on oeis.org
1, 41, 1640, 65600, 2623180, 104894400, 4194464820, 167726145600, 6706948607580, 268194081870000, 10724409825744420, 428842296999090000, 17148329715447559980, 685718769084764781600, 27420176663127165184020
Offset: 0
-
R:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+x)*(1-x^4)/(1-40*x+819*x^4-780*x^5) )); // G. C. Greubel, Apr 30 2019
-
CoefficientList[Series[(t^4+2*t^3+2*t^2+2*t+1)/(780*t^4-39*t^3-39*t^2 - 39*t+1), {t,0,20}], t] (* or *) Join[{1}, LinearRecurrence[ {39, 39, 39, -780}, {41,1640,65600,2623180} 20]] (* G. C. Greubel, Dec 11 2016 *)
coxG[{4,780,-39}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Jan 18 2019 *)
-
my(t='t+O('t^20)); Vec((t^4+2*t^3+2*t^2+2*t+1)/(780*t^4-39*t^3- 39*t^2-39*t+1)) \\ G. C. Greubel, Dec 11 2016
-
((1+x)*(1-x^4)/(1-40*x+819*x^4-780*x^5)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Apr 30 2019
A163226
Number of reduced words of length n in Coxeter group on 43 generators S_i with relations (S_i)^2 = (S_i S_j)^4 = I.
Original entry on oeis.org
1, 43, 1806, 75852, 3184881, 133727076, 5614945203, 235760834988, 9899147615406, 415646320207041, 17452195907135052, 732784406294332791, 30768219023291805678, 1291898809163525952060, 54244365975641552431917
Offset: 0
-
R:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+x)*(1-x^4)/(1-42*x+902*x^4-861*x^5) )); // G. C. Greubel, Apr 30 2019
-
CoefficientList[Series[(t^4+2*t^3+2*t^2+2*t+1)/(861*t^4-41*t^3-41*t^2 - 41*t+1), {t,0,20}], t] (* or *) Join[{1}, LinearRecurrence[ {41, 41, 41, -861}, {43,1806,75852,3184881}, 20]] (* G. C. Greubel, Dec 11 2016 *)
coxG[{4, *61, -41}] (* The coxG program is at A169452 *) (* G. C. Greubel, Apr 30 2019 *)
-
my(t='t+O('t^20)); Vec((t^4+2*t^3+2*t^2+2*t+1)/(861*t^4-41*t^3 - 41*t^2-41*t+1)) \\ G. C. Greubel, Dec 11 2016
-
((1+x)*(1-x^4)/(1-42*x+902*x^4-861*x^5)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Apr 30 2019
A163230
Number of reduced words of length n in Coxeter group on 44 generators S_i with relations (S_i)^2 = (S_i S_j)^4 = I.
Original entry on oeis.org
1, 44, 1892, 81356, 3497362, 150345888, 6463124976, 277839201024, 11943854101410, 513446807614356, 22072240836651852, 948849634132915284, 40789498214388049434, 1753474001285744132472, 75378987430163637459624
Offset: 0
-
R:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+x)*(1-x^4)/(1-43*x+945*x^4-903*x^5) )); // G. C. Greubel, Apr 30 2019
-
coxG[{4,903,-42}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Apr 18 2015 *)
CoefficientList[Series[(t^4+2*t^3+2*t^2+2*t+1)/(903*t^4-42*t^3-42*t^2 - 42*t+1), {t,0,20}], t] (* or *) Join[{1}, LinearRecurrence[ {42, 42, 42, -903}, {44,1892,81356,3497362}, 50]] (* G. C. Greubel, Dec 11 2016 *)
-
my(t='t+O('t^20)); Vec((t^4+2*t^3+2*t^2+2*t+1)/(903*t^4-42*t^3 - 42*t^2-42*t+1)) \\ G. C. Greubel, Dec 11 2016
-
((1+x)*(1-x^4)/(1-43*x+945*x^4-903*x^5)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Apr 30 2019
Comments