Original entry on oeis.org
0, 1, 3, 25, 340, 7026, 204862, 8007602, 404077632, 25569505628, 1982619985192, 184861494417920, 20406183592852460, 2631875641089358912, 392163247878318070876, 66855512799464487146588, 12929525365915201064027856, 2815456378791384288128303192
Offset: 1
-
{ (matrix(30,30,i,j,(-1)^(i!=j)*stirling(i,j,2))^(-1))[,2] } \\ Max Alekseyev, Jun 17 2011
A162498
Triangle read by rows: T(n, k) = Sum_{j=0..k} (-1)^j*binomial(n, j)*(k + 1 - j)^(n - 1).
Original entry on oeis.org
1, 1, 1, 3, 4, 1, 23, 33, 11, 1, 425, 620, 220, 26, 1, 18129, 26525, 9520, 1180, 57, 1, 1721419, 2519664, 905765, 113050, 5649, 120, 1, 353654167, 517670461, 186123259, 23248085, 1166221, 25347, 247, 1, 153923102577, 225309742552, 81009042744, 10119247684, 507795498, 11059468, 109386, 502, 1
Offset: 1
Triangle begins:
{1},
{1, 1},
{3, 4, 1},
{23, 33, 11, 1},
{425, 620, 220, 26, 1},
{18129, 26525, 9520, 1180, 57, 1},
{1721419, 2519664, 905765, 113050, 5649, 120, 1},
{353654167, 517670461, 186123259, 23248085, 1166221, 25347, 247, 1},
{153923102577, 225309742552, 81009042744, 10119247684, 507795498, 11059468, 109386, 502, 1},
...
-
t[n_,k_]:=Sum[(-1)^j Binomial[n,j](k+1-j)^(n-1),{j,0,k}];
M[n_]:=Table[If[k <= m,(-1)^(m+k)*t[m,k],0],{k,0,n-2},{m,2,n}];
Flatten[Table[Table[Inverse[M[12]][[m,n]],{m,1,n}],{n,1,11}]]
A350531
Triangle read by rows: T(n,k) is the number of labeled loop-threshold graphs on vertex set [n] with k components, for n >= 1 and 1 <= k <= n.
Original entry on oeis.org
2, 3, 3, 13, 9, 4, 75, 52, 18, 5, 541, 375, 130, 30, 6, 4683, 3246, 1125, 260, 45, 7, 47293, 32781, 11361, 2625, 455, 63, 8, 545835, 378344, 131124, 30296, 5250, 728, 84, 9, 7087261, 4912515, 1702548, 393372, 68166, 9450, 1092, 108, 10
Offset: 1
Triangle begins:
2;
3, 3;
13, 9, 4;
75, 52, 18, 5;
541, 375, 130, 30, 6;
4683, 3246, 1125, 260, 45, 7;
47293, 32781, 11361, 2625, 455, 63, 8;
545835, 378344, 131124, 30296, 5250, 728, 84, 9;
7087261, 4912515, 1702548, 393372, 68166, 9450, 1092, 108, 10;
...
Except at n = 1, first column is
A000670.
Essentially the same as
A154921 --- in
A350531 (this triangle), replace the last nonzero entry in row m (this entry is m+1) with the two entries m, 1 to get
A154921.
-
eulerian[n_, m_] := eulerian[n, m] =
Sum[((-1)^k)*Binomial[n+1, k]*((m+1-k)^n), {k, 0, m+1}] (* eulerian[n, m] is an Eulerian number, counting the permutations of [n] with m descents *); T[1, 1] = 2; T[n_, 1] := T[n, 1] = Sum[eulerian[n, k]*(2^k), {k, 0, n - 1}]; T[n_, n_] := T[n, n] = n + 1; T[n_, k_] := T[n, k] = Binomial[n, k - 1]*T[n - k + 1, 1]; Table[T[n, k], {n, 1, 12}, {k, 1, n}]
Original entry on oeis.org
1, 1, 1, 5, 6, 1, 93, 115, 23, 1, 5993, 7436, 1518, 76, 1, 1272089, 1578757, 322762, 16330, 237, 1, 857402029, 1064110290, 217560951, 11012540, 160571, 722, 1, 1792650585525, 2224835452407, 454875884137, 23025275075, 335768223, 1512581, 2179, 1
Offset: 1
{1},
{1, 1},
{5, 6, 1},
{93, 115, 23, 1},
{5993, 7436, 1518, 76, 1},
{1272089, 1578757, 322762, 16330, 237, 1},
{857402029, 1064110290, 217560951, 11012540, 160571, 722, 1},
{1792650585525, 2224835452407, 454875884137, 23025275075, 335768223, 1512581, 2179, 1},
{11464255554367057, 14228139328931096, 2908996087466828, 147249943814184, 2147290464886, 9673492136, 13945196, 6552, 1},
{222406320165016449457, 276025608122908733321, 56434463826320585284, 2856645864675796564, 41657391444153086, 187665608020478, 270538484020, 127141156, 19673, 1},
{13026233415367869864109781, 16166689855580307839632286, 3305339964838291288943901, 167312402773377971746920, 2439853795947184617546, 10991486289326969076, 15845312257310658, 7446608913000, 1152338433, 59038, 1}
-
m = 2;
A[n_, 1] := 1
A[n_, n_] := 1
A[n_, k_] := (m*n - m*k + 1)A[n - 1, k - 1] + (m*k - (m - 1))A[n - 1, k]
a = Table[A[n, k], {n, 12}, {k, n}]
M[n_] := Table[If[k <= m, (-1)^(m + k)*a[[m, k]], 0], {k, 1, n}, {m, 1, n}]
Table[Table[Inverse[M[12]][[m, n]], {m, 1, n}], {n, 1, 11}]
Flatten[%]
Comments