A163138
G.f. satisfies: A(x) = exp( Sum_{n>=1} (2^n + A(x))^n * x^n/n ).
Original entry on oeis.org
1, 3, 20, 329, 22584, 7938470, 12605643936, 84977963809781, 2379247465188706528, 273419351336298753589802, 128009562526607810326874017088, 242979581192696030760182903464959706
Offset: 0
G.f.: A(x) = 1 + 3*x + 20*x^2 + 329*x^3 + 22584*x^4 + 7938470*x^5 +...
log(A(x)) = [2 + A(x)]*x + [2^2 + A(x)]^2*x^2/2 + [2^3 + A(x)]^3*x^3/3 +...
log(A(x)*(1-xA(x))) = 2/(1-2xA(x))*x + 2^4/(1-4xA(x))^2*x^2/2 + 2^9/(1-8xA(x))^3*x^3/3 +...
log(A(x)) = 3*x + 31*x^2/2 + 834*x^3/3 + 86227*x^4/4 + 39339038*x^5/5 +...
-
m = 12; A[] = 1; Do[A[x] = Exp[Sum[(2^n + A[x])^n x^n/n, {n, 1, m}]] + O[x]^m, {m}]; CoefficientList[A[x], x] (* Jean-François Alcover, Nov 03 2019 *)
-
{a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, (2^m+A+x*O(x^n))^m*x^m/m))); polcoeff(A, n)}
A167007
G.f.: A(x) = exp( Sum_{n>=1} A167010(n)*x^n/n ) where A167010(n) = Sum_{k=0..n} binomial(n,k)^n.
Original entry on oeis.org
1, 2, 5, 26, 501, 42262, 14564184, 18926665052, 96371663657380, 1825266130738144920, 136764680697906838980633, 38133043109557952095731186822, 42464330390232136488003531922964743
Offset: 0
G.f.: A(x) = 1 + 2*x + 5*x^2 + 26*x^3 + 501*x^4 + 42262*x^5 + ...
log(A(x)) = 2*x + 6*x^2/2 + 56*x^3/3 + 1810*x^4/4 + 206252*x^5/5 + 86874564*x^6/6 + ... + A167010(n)*x^n/n + ...
-
A167010:= func< n | (&+[Binomial(n,j)^n: j in [0..n]]) >;
function A167007(n)
if n lt 2 then return n+1;
else return (&+[A167010(j)*A167007(n-j): j in [1..n]])/n;
end if; return A167007;
end function;
[A167007(n): n in [0..20]]; // G. C. Greubel, Aug 26 2022
-
A167010[n_]:= A167010[n]= Sum[Binomial[n,j]^n, {j,0,n}];
A167007[n_]:= A167007[n]= If[n==0, 1, (1/n)*Sum[A167010[j]*A167007[n-j], {j,n}]];
Table[A167007[n], {n,0,30}] (* G. C. Greubel, Aug 26 2022 *)
-
{a(n) = polcoeff(exp(sum(m=1, n, sum(k=0, m, binomial(m,k)^m)*x^m/m) +x*O(x^n)), n)};
-
{a(n)=if(n==0,1,(1/n)*sum(k=1,n,sum(j=0, k, binomial(k, j)^k)*a(n-k)))} \\ Paul D. Hanna, Nov 25 2009
-
def A167010(n): return sum(binomial(n,j)^n for j in (0..n))
def A167007(n): return 1 if (n==0) else (1/n)*sum( A167010(j)*A167007(n-j) for j in (1..n))
[A167007(n) for n in (0..30)] # G. C. Greubel, Aug 26 2022
A177399
O.g.f.: exp( Sum_{n>=1} (sigma(2n)-sigma(n))^n * x^n/n ).
Original entry on oeis.org
1, 2, 10, 188, 1414, 53596, 2923652, 44668152, 651967302, 605335444140, 7564881098284, 157357140966472, 96537385644719004, 695895399853879448, 86358988630956719304, 1103071610291574716763120
Offset: 0
G.f.: A(x) = 1 + 2*x + 10*x^2 + 188*x^3 + 1414*x^4 + 53596*x^5 +...
log(A(x)) = 2*x + 4^2*x^2/2 + 8^3*x^3/3 + 8^4*x^4/4 + 12^5*x^5/5 +...+ A054785(n)^n*x^n/n +...
A202519
G.f. satisfies: A(x) = exp( Sum_{n>=1} (2*A(x) + (-1)^n)^n * x^n/n ).
Original entry on oeis.org
1, 1, 7, 27, 165, 877, 5451, 32887, 210505, 1347865, 8859695, 58647219, 393704205, 2662542565, 18166847507, 124738843247, 861922384657, 5986483380145, 41780493605719, 292817777533259, 2060138522838645, 14544377538584925, 103007560370361691, 731635362026777831
Offset: 0
G.f.: A(x) = 1 + x + 7*x^2 + 27*x^3 + 165*x^4 + 877*x^5 + 5451*x^6 +...
where
log(A(x)) = (2*A(x) - 1)*x + (2*A(x) + 1)^2*x^2/2 + (2*A(x) - 1)^3*x^3/3 + (2*A(x) + 1)^4*x^4/4 +...
log(A(x)*(1-2*x*A(x))) = -1/(1 + 2*x*A(x))*x + 1/(1 - 2*x*A(x))^2*x^2/2 - 1/(1 + 2*x*A(x))^3*x^3/3 + 1/(1 - 2*x*A(x))^4*x^4/4 +...
-
{a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, (2*A+(-1)^m+x*O(x^n))^m*x^m/m))); polcoeff(A, n)}
A202668
G.f. satisfies: A(x) = exp( Sum_{n>=1} (A(x) - (-1)^n)^n * x^n/n ).
Original entry on oeis.org
1, 2, 4, 12, 42, 158, 618, 2498, 10360, 43832, 188420, 820608, 3613212, 16057640, 71933768, 324482500, 1472604586, 6719100254, 30804229858, 141829955338, 655541387406, 3040527731790, 14147444737654, 66018910398574, 308898542610666, 1448867831911170
Offset: 0
G.f.: A(x) = 1 + 2*x + 4*x^2 + 12*x^3 + 42*x^4 + 158*x^5 + 618*x^6 + ...
where
log(A(x)) = (A(x) + 1)*x + (A(x) - 1)^2*x^2/2 + (A(x) + 1)^3*x^3/3 + (A(x) - 1)^4*x^4/4 + ...
log( A(x)*(1-x*A(x)) ) = 1/(1 + x*A(x))*x + 1/(1 - x*A(x))^2*x^2/2 + 1/(1 + x*A(x))^3*x^3/3 + 1/(1 - x*A(x))^4*x^4/4 + ...
From _Paul D. Hanna_, Oct 11 2024: (Start)
SPECIFIC VALUES.
A(t) = 2 at t = 0.195782060076367892865630673522992184838101...
where 12*t^3 - 4*t^2 - 15*t + 3 = 0.
A(t) = 3/2 at t = 0.1528468026979892250300352740045422934687...
where 45*t^3 - 18*t^2 - 260*t + 40 = 0.
A(1/6) = 1.5975588141693553913621853542774164447766461118908...
A(1/7) = 1.4422077780342017637064340698606478883307441400444...
A(1/8) = 1.3558965312086216338851741626422486193364696459775...
A(1/9) = 1.2992876417963412242026519185070094965390617289384...
A(1/10) = 1.258828814568496961617240364573696812116531654741...
(End)
-
{a(n) = my(A=1+x); for(i=1, n, A=exp(sum(m=1, n, (A - (-1)^m +x*O(x^n))^m * x^m/m))); polcoeff(A, n)}
for(n=0,30,print1(a(n),", "))
A156214
G.f.: A(x) = exp( Sum_{n>=1} 2^(n^2)*(x*A(x))^n/n ), a power series in x with integer coefficients.
Original entry on oeis.org
1, 2, 14, 256, 18734, 6932928, 11550075900, 80606017093632, 2307293302418365718, 268696321569450570148864, 126770971088210751226430473604, 241680859880056839468193961216049152
Offset: 0
G.f.: A(x) = 1 + 2*x + 14*x^2 + 256*x^3 + 18734*x^4 + 6932928*x^5 +...
log(A(x)) = 2*x + 24*x^2/2 + 692*x^3/3 + 72704*x^4/4 + 34465932*x^5/5 +...
log(A(x)) = 2*xA(x) + 2^4*(xA(x))^2/2 + 2^9*(xA(x))^3/3 + 2^16*(xA(x))^4/4 + ...
-
terms = 12;
g[n_] := g[n] = If[n == 0, 1, (1/n)*Sum[2^(k^2)*g[n - k], {k, 1, n}]];
G[x_] = Sum[g[n]*x^n, {n, 0, terms}];
A[x_] = (1/x)*InverseSeries[Series[x/G[x], {x, 0, terms}], x];
CoefficientList[A[x] + O[x]^terms, x] (* Jean-François Alcover, Nov 14 2017 *)
-
{a(n)=local(A=1+x+x*O(x^n)); for(i=1,n,A=exp(sum(k=1,n,(2^k*x*A)^k/k))); polcoeff(A,n)}
A156335
G.f.: A(x) = exp( Sum_{n>=1} 2^[(n^2+1)/2]*x^n/n ), a power series in x with integer coefficients.
Original entry on oeis.org
1, 2, 4, 16, 92, 1816, 47344, 4888640, 546663016, 245429690704, 113080892367776, 209848258185362560, 393950238751186551328, 2976605303522286162203456, 22642571073509592590956639360, 692351532949951721637759480882688
Offset: 0
G.f.: A(x) = 1 + 2*x + 4*x^2 + 16*x^3 + 92*x^4 + 1816*x^5 + 47344*x^6 +...
log(A(x)) = 2*x + 2^2*x^2/2 + 2^5*x^3/3 + 2^8*x^4/4 + 2^13*x^5/5 + 2^18*x^6/6 +...
A156337
G.f.: A(x) = exp( Sum_{n>=1} 4^[(n^2+1)/2]*x^n/n ), a power series in x with integer coefficients.
Original entry on oeis.org
1, 4, 16, 384, 17856, 13492992, 11507268608, 160888878129152, 2306486569154275328, 537309590223329223155712, 126767209261235580163634135040, 483356141899716284828508078471905280
Offset: 0
G.f.: A(x) = 1 + 4*x + 16*x^2 + 384*x^3 + 17856*x^4 + 13492992*x^5 +...
log(A(x)) = 4*x + 4^2*x^2/2 + 4^5*x^3/3 + 4^8*x^4/4 + 4^13*x^5/5 + 4^18*x^6/6 +...
A156340
G.f.: A(x) = exp( Sum_{n>=1} 2^(n^2-n+1) * x^n/n ), a power series in x with integer coefficients.
Original entry on oeis.org
1, 2, 6, 52, 2150, 423804, 358766428, 1257303170984, 18016913850523398, 1049450810327077624300, 247590106794776589832254260, 236013988752078034604114551553880, 907420117150975291421488593816623266780, 14052902173791695936955751957273562543384799320
Offset: 0
G.f.: A(x) = 1 + 2*x + 6*x^2 + 52*x^3 + 2150*x^4 + 423804*x^5 + ...
log(A(x)) = 2*x + 2^3*x^2/2 + 2^7*x^3/3 + 2^13*x^4/4 + 2^21*x^5/5 + 2^31*x^6/6 + ...
-
{a(n)=polcoeff(exp(sum(k=1,n,2^(k^2-k+1)*x^k/k)+x*O(x^n)),n)}
for(n=0,15,print1(a(n),", "))
-
{a(n)=if(n==0,1,(1/n)*sum(k=1,n,2^(k^2-k+1)*a(n-k)))}
for(n=0,15,print1(a(n),", "))
A157315
G.f.: A(x) = sin( Sum_{n>=0} 2^((2n+1)^2) * C(2n,n)/4^n * x^(2n+1)/(2n+1) ); alternating zeros omitted.
Original entry on oeis.org
2, 84, 2516412, 25131689308776, 73459034127708442263660, 59475400379433834763260101514326040, 12984879931670595437855043594849682375333268239320
Offset: 1
G.f.: A(x) = 2*x + 84*x^3 + 2516412*x^5 + 25131689308776*x^7 + ...
The inverse sine of A(x) begins:
arcsin(A(x)) = 2*x + 2^9*(2/4)*x^3/3 + 2^25*(6/4^2)*x^5/5 + 2^49*(20/4^3)*x^7/7 + 2^81*(70/4^4)*x^9/9 + ...
-
m:=30;
R:=PowerSeriesRing(Rationals(), m);
b:=Coefficients(R!( Sin( (&+[2^(4*j^2+2*j+1)*Binomial(2*j,j)*x^(2*j+1)/(2*j+1): j in [0..m+2]]) ) ));
[b[2*n-1]: n in [1..Floor((m-2)/2)]]; // G. C. Greubel, Mar 16 2021
-
m := 30;
S := series( sin(add(2^(4*j^2+2*j+1)*binomial(2*j,j)*x^(2*j+1)/(2*j+1), j = 0..m+2)), x, m+1);
seq(coeff(S, x, 2*j+1), j = 0..m/2); # G. C. Greubel, Mar 16 2021
-
With[{m = 30}, CoefficientList[Series[Sin[Sum[2^(4*n^2+2*n+1)*((n+1)/(2*n+1)) *CatalanNumber[n]*x^(2*n+1), {n,0,m+2}]], {x,0,m}], x]][[2 ;; ;; 2 ]] (* G. C. Greubel, Mar 16 2021 *)
-
{a(n)=polcoeff(sin(sum(m=0,n\2,2^((2*m+1)^2)*binomial(2*m,m)/4^m*x^(2*m+1)/(2*m+1))+x*O(x^n)),n)}
-
m=30
def A157315_list(prec):
P. = PowerSeriesRing(QQ, prec)
return P( sin( sum(2^(4*j^2+2*j+1)*binomial(2*j,j)*x^(2*j+1)/(2*j+1) for j in [0..m+2])) ).list()
a=A157315_list(m); [a[2*n+1] for n in (0..(m-2)/2)] # G. C. Greubel, Mar 16 2021
Comments