cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 49 results. Next

A163138 G.f. satisfies: A(x) = exp( Sum_{n>=1} (2^n + A(x))^n * x^n/n ).

Original entry on oeis.org

1, 3, 20, 329, 22584, 7938470, 12605643936, 84977963809781, 2379247465188706528, 273419351336298753589802, 128009562526607810326874017088, 242979581192696030760182903464959706
Offset: 0

Views

Author

Paul D. Hanna, Aug 07 2009

Keywords

Comments

More generally, we have the following identity:
If A(x,q) = exp( Sum_{n>=1} (q^n + A(x,q))^n * x^n/n ), then
A(x,q) = 1/(1-x*A(x,q))*exp( Sum_{n>=1} q^(n^2)/(1-q^n*x*A(x,q))^n*x^n/n ).
Conjecture: if q is an integer, then A(x,q) is a power series in x with integer coefficients.
Setting q=1 defines the g.f. of the large Schroeder numbers (A006318).

Examples

			G.f.: A(x) = 1 + 3*x + 20*x^2 + 329*x^3 + 22584*x^4 + 7938470*x^5 +...
log(A(x)) = [2 + A(x)]*x + [2^2 + A(x)]^2*x^2/2 + [2^3 + A(x)]^3*x^3/3 +...
log(A(x)*(1-xA(x))) = 2/(1-2xA(x))*x + 2^4/(1-4xA(x))^2*x^2/2 + 2^9/(1-8xA(x))^3*x^3/3 +...
log(A(x)) = 3*x + 31*x^2/2 + 834*x^3/3 + 86227*x^4/4 + 39339038*x^5/5 +...
		

Crossrefs

Programs

  • Mathematica
    m = 12; A[] = 1; Do[A[x] = Exp[Sum[(2^n + A[x])^n x^n/n, {n, 1, m}]] + O[x]^m, {m}]; CoefficientList[A[x], x] (* Jean-François Alcover, Nov 03 2019 *)
  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, (2^m+A+x*O(x^n))^m*x^m/m))); polcoeff(A, n)}

Formula

G.f.: A(x) = 1/(1-x*A(x))*exp( Sum_{n>=1} 2^(n^2)/(1 - 2^n*x*A(x))^n * x^n/n ).

Extensions

Comment corrected by Paul D. Hanna, Aug 08 2009

A167007 G.f.: A(x) = exp( Sum_{n>=1} A167010(n)*x^n/n ) where A167010(n) = Sum_{k=0..n} binomial(n,k)^n.

Original entry on oeis.org

1, 2, 5, 26, 501, 42262, 14564184, 18926665052, 96371663657380, 1825266130738144920, 136764680697906838980633, 38133043109557952095731186822, 42464330390232136488003531922964743
Offset: 0

Views

Author

Paul D. Hanna, Nov 17 2009

Keywords

Examples

			G.f.: A(x) = 1 + 2*x + 5*x^2 + 26*x^3 + 501*x^4 + 42262*x^5 + ...
log(A(x)) = 2*x + 6*x^2/2 + 56*x^3/3 + 1810*x^4/4 + 206252*x^5/5 + 86874564*x^6/6 + ... + A167010(n)*x^n/n + ...
		

Crossrefs

Programs

  • Magma
    A167010:= func< n | (&+[Binomial(n,j)^n: j in [0..n]]) >;
    function A167007(n)
      if n lt 2 then return n+1;
      else return (&+[A167010(j)*A167007(n-j): j in [1..n]])/n;
      end if; return A167007;
    end function;
    [A167007(n): n in [0..20]]; // G. C. Greubel, Aug 26 2022
    
  • Mathematica
    A167010[n_]:= A167010[n]= Sum[Binomial[n,j]^n, {j,0,n}];
    A167007[n_]:= A167007[n]= If[n==0, 1, (1/n)*Sum[A167010[j]*A167007[n-j], {j,n}]];
    Table[A167007[n], {n,0,30}] (* G. C. Greubel, Aug 26 2022 *)
  • PARI
    {a(n) = polcoeff(exp(sum(m=1, n, sum(k=0, m, binomial(m,k)^m)*x^m/m) +x*O(x^n)), n)};
    
  • PARI
    {a(n)=if(n==0,1,(1/n)*sum(k=1,n,sum(j=0, k, binomial(k, j)^k)*a(n-k)))} \\ Paul D. Hanna, Nov 25 2009
    
  • SageMath
    def A167010(n): return sum(binomial(n,j)^n for j in (0..n))
    def A167007(n): return 1 if (n==0) else (1/n)*sum( A167010(j)*A167007(n-j) for j in (1..n))
    [A167007(n) for n in (0..30)] # G. C. Greubel, Aug 26 2022

Formula

a(n) = (1/n)*Sum_{k=1..n} A167010(k)*a(n-k) for n>0 with a(0)=1. - Paul D. Hanna, Nov 25 2009

A177399 O.g.f.: exp( Sum_{n>=1} (sigma(2n)-sigma(n))^n * x^n/n ).

Original entry on oeis.org

1, 2, 10, 188, 1414, 53596, 2923652, 44668152, 651967302, 605335444140, 7564881098284, 157357140966472, 96537385644719004, 695895399853879448, 86358988630956719304, 1103071610291574716763120
Offset: 0

Views

Author

Paul D. Hanna, May 30 2010

Keywords

Comments

Here sigma(n) = A000203(n) is the sum of divisors of n.
Compare g.f. to the formula for Jacobi theta_4(x) given by:
. theta_4(x) = exp( Sum_{n>=1} -(sigma(2n)-sigma(n))*x^n/n )
where theta_4(x) = 1 + Sum_{n>=1} 2*(-x)^(n^2).

Examples

			G.f.: A(x) = 1 + 2*x + 10*x^2 + 188*x^3 + 1414*x^4 + 53596*x^5 +...
log(A(x)) = 2*x + 4^2*x^2/2 + 8^3*x^3/3 + 8^4*x^4/4 + 12^5*x^5/5 +...+ A054785(n)^n*x^n/n +...
		

Crossrefs

Programs

  • PARI
    {a(n)=polcoeff(exp(sum(m=1,n,(sigma(2*m)-sigma(m))^m*x^m/m)+x*O(x^n)),n)}

A202519 G.f. satisfies: A(x) = exp( Sum_{n>=1} (2*A(x) + (-1)^n)^n * x^n/n ).

Original entry on oeis.org

1, 1, 7, 27, 165, 877, 5451, 32887, 210505, 1347865, 8859695, 58647219, 393704205, 2662542565, 18166847507, 124738843247, 861922384657, 5986483380145, 41780493605719, 292817777533259, 2060138522838645, 14544377538584925, 103007560370361691, 731635362026777831
Offset: 0

Views

Author

Paul D. Hanna, Dec 22 2011

Keywords

Examples

			G.f.: A(x) = 1 + x + 7*x^2 + 27*x^3 + 165*x^4 + 877*x^5 + 5451*x^6 +...
where
log(A(x)) = (2*A(x) - 1)*x + (2*A(x) + 1)^2*x^2/2 + (2*A(x) - 1)^3*x^3/3 + (2*A(x) + 1)^4*x^4/4 +...
log(A(x)*(1-2*x*A(x))) = -1/(1 + 2*x*A(x))*x + 1/(1 - 2*x*A(x))^2*x^2/2 - 1/(1 + 2*x*A(x))^3*x^3/3 + 1/(1 - 2*x*A(x))^4*x^4/4 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, (2*A+(-1)^m+x*O(x^n))^m*x^m/m))); polcoeff(A, n)}

Formula

G.f. satisfies: A(x) = 1/(1-2*x*A(x)) * exp( Sum_{n>=1} (-1)^n/(1 - (-1)^n*2*x*A(x))^n * x^n/n ).
G.f. satisfies: A(x) = sqrt( (1 - (2*A(x)-1)^2*x^2)/(1 - (2*A(x)+1)^2*x^2) ) / (1 - (2*A(x)-1)*x).
G.f. satisfies: 0 = -(1-x) - 2*x*A(x) + (1-x)*(1+x)^2*A(x)^2 - 2*x*(1+x)^2*A(x)^3 - 2^2*x^2*(1-x)*A(x)^4 + 2^3*x^3*A(x)^5.

A202668 G.f. satisfies: A(x) = exp( Sum_{n>=1} (A(x) - (-1)^n)^n * x^n/n ).

Original entry on oeis.org

1, 2, 4, 12, 42, 158, 618, 2498, 10360, 43832, 188420, 820608, 3613212, 16057640, 71933768, 324482500, 1472604586, 6719100254, 30804229858, 141829955338, 655541387406, 3040527731790, 14147444737654, 66018910398574, 308898542610666, 1448867831911170
Offset: 0

Views

Author

Paul D. Hanna, Dec 22 2011

Keywords

Examples

			G.f.: A(x) = 1 + 2*x + 4*x^2 + 12*x^3 + 42*x^4 + 158*x^5 + 618*x^6 + ...
where
log(A(x)) = (A(x) + 1)*x + (A(x) - 1)^2*x^2/2 + (A(x) + 1)^3*x^3/3 + (A(x) - 1)^4*x^4/4 + ...
log( A(x)*(1-x*A(x)) ) = 1/(1 + x*A(x))*x + 1/(1 - x*A(x))^2*x^2/2 + 1/(1 + x*A(x))^3*x^3/3 + 1/(1 - x*A(x))^4*x^4/4 + ...
From _Paul D. Hanna_, Oct 11 2024: (Start)
SPECIFIC VALUES.
A(t) = 2 at t = 0.195782060076367892865630673522992184838101...
where 12*t^3 - 4*t^2 - 15*t + 3 = 0.
A(t) = 3/2 at t = 0.1528468026979892250300352740045422934687...
where 45*t^3 - 18*t^2 - 260*t + 40 = 0.
A(1/6) = 1.5975588141693553913621853542774164447766461118908...
A(1/7) = 1.4422077780342017637064340698606478883307441400444...
A(1/8) = 1.3558965312086216338851741626422486193364696459775...
A(1/9) = 1.2992876417963412242026519185070094965390617289384...
A(1/10) = 1.258828814568496961617240364573696812116531654741...
(End)
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=1+x); for(i=1, n, A=exp(sum(m=1, n, (A - (-1)^m +x*O(x^n))^m * x^m/m))); polcoeff(A, n)}
    for(n=0,30,print1(a(n),", "))

Formula

G.f. satisfies: A(x) = 1/(1-x*A(x)) * exp( Sum_{n>=1} 1/(1 - (-1)^n*x*A(x))^n * x^n/n ).
G.f. satisfies: A(x) = sqrt( (1 - (A(x)+1)^2*x^2)/(1 - (A(x)-1)^2*x^2) ) / (1 - (A(x)+1)*x).
G.f. satisfies: 0 = -(1+x) - x*A(x) + (1+x)*(1-x)^2*A(x)^2 - x*(1-x)^2*A(x)^3 - x^2*(1+x)*A(x)^4 + x^3*A(x)^5.
From Vaclav Kotesovec, Oct 11 2024: (Start)
a(n) ~ sqrt((-1 - s + (-1 - 2*r + 3*r^2)*s^2 + (-1 + 4*r - 3*r^2)*s^3 - r*(2 + 3*r)*s^4 + 3*r^2*s^5)/(1 - r*(1 + 3*s) + r^2*(-1 + 6*s - 6*s^2) + r^3*(1 - 3*s - 6*s^2 + 10*s^3))) / (2*sqrt(Pi) * n^(3/2) * r^(n - 1/2)), where r = 0.20089689587759865228481815120918189691453519374477284069915... and s = 2.3487742728380350386577466365052703249852809669846393564277... are positive real roots of the system of equations s^2*(1 + r^3*(-1 + s)^2*(1 + s)) = 1 + r^2*(-1 + s)^2*s^2 + r*(1 + s + s^2 + s^3) and 2*(-1 + r)^2*(1 + r)*s + 5*r^3*s^4 = r*(1 + 3*(-1 + r)^2*s^2 + 4*r*(1 + r)*s^3).
Numerically, a(n) ~ c * d^n / n^(3/2), where d = 1/r = 4.977677706923229216140896605827075562322447814212438341196056039... and c = 0.7100736662419384614471705442776864037581200760804364785319... (End)

A156214 G.f.: A(x) = exp( Sum_{n>=1} 2^(n^2)*(x*A(x))^n/n ), a power series in x with integer coefficients.

Original entry on oeis.org

1, 2, 14, 256, 18734, 6932928, 11550075900, 80606017093632, 2307293302418365718, 268696321569450570148864, 126770971088210751226430473604, 241680859880056839468193961216049152
Offset: 0

Views

Author

Paul D. Hanna, Feb 06 2009

Keywords

Comments

Compare to g.f. for Catalan sequence: C(x) = exp( Sum_{n>=1} (x*C(x))^n/n ).

Examples

			G.f.: A(x) = 1 + 2*x + 14*x^2 + 256*x^3 + 18734*x^4 + 6932928*x^5 +...
log(A(x)) = 2*x + 24*x^2/2 + 692*x^3/3 + 72704*x^4/4 + 34465932*x^5/5 +...
log(A(x)) = 2*xA(x) + 2^4*(xA(x))^2/2 + 2^9*(xA(x))^3/3 + 2^16*(xA(x))^4/4 + ...
		

Crossrefs

Programs

  • Mathematica
    terms = 12;
    g[n_] := g[n] = If[n == 0, 1, (1/n)*Sum[2^(k^2)*g[n - k], {k, 1, n}]];
    G[x_] = Sum[g[n]*x^n, {n, 0, terms}];
    A[x_] = (1/x)*InverseSeries[Series[x/G[x], {x, 0, terms}], x];
    CoefficientList[A[x] + O[x]^terms, x] (* Jean-François Alcover, Nov 14 2017 *)
  • PARI
    {a(n)=local(A=1+x+x*O(x^n)); for(i=1,n,A=exp(sum(k=1,n,(2^k*x*A)^k/k))); polcoeff(A,n)}

Formula

G.f.: A(x) = (1/x)*Series_Reversion(x/G(x)) where A(x*G(x)) = G(x) is the g.f. of A155200. [Paul D. Hanna, Jun 30 2009]

A156335 G.f.: A(x) = exp( Sum_{n>=1} 2^[(n^2+1)/2]*x^n/n ), a power series in x with integer coefficients.

Original entry on oeis.org

1, 2, 4, 16, 92, 1816, 47344, 4888640, 546663016, 245429690704, 113080892367776, 209848258185362560, 393950238751186551328, 2976605303522286162203456, 22642571073509592590956639360, 692351532949951721637759480882688
Offset: 0

Views

Author

Paul D. Hanna, Feb 10 2009

Keywords

Examples

			G.f.: A(x) = 1 + 2*x + 4*x^2 + 16*x^3 + 92*x^4 + 1816*x^5 + 47344*x^6 +...
log(A(x)) = 2*x + 2^2*x^2/2 + 2^5*x^3/3 + 2^8*x^4/4 + 2^13*x^5/5 + 2^18*x^6/6 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=polcoeff(exp(sum(k=1, n, 2^floor((k^2+1)/2)*x^k/k)+x*O(x^n)), n)}

Formula

a(n) = (1/n)*Sum_{k=1..n} 2^floor((k^2+1)/2) * a(n-k) for n>0, with a(0)=1.

A156337 G.f.: A(x) = exp( Sum_{n>=1} 4^[(n^2+1)/2]*x^n/n ), a power series in x with integer coefficients.

Original entry on oeis.org

1, 4, 16, 384, 17856, 13492992, 11507268608, 160888878129152, 2306486569154275328, 537309590223329223155712, 126767209261235580163634135040, 483356141899716284828508078471905280
Offset: 0

Views

Author

Paul D. Hanna, Feb 10 2009

Keywords

Comments

It appears that g.f. exp( Sum_{n>=1} m^[(n^2+1)/2]*x^n/n ) forms a power series in x with integer coefficients for any positive integer m.

Examples

			G.f.: A(x) = 1 + 4*x + 16*x^2 + 384*x^3 + 17856*x^4 + 13492992*x^5 +...
log(A(x)) = 4*x + 4^2*x^2/2 + 4^5*x^3/3 + 4^8*x^4/4 + 4^13*x^5/5 + 4^18*x^6/6 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=polcoeff(exp(sum(k=1, n, 4^floor((k^2+1)/2)*x^k/k)+x*O(x^n)), n)}

Formula

a(n) = (1/n)*Sum_{k=1..n} 4^floor((k^2+1)/2) * a(n-k) for n>0, with a(0)=1.

A156340 G.f.: A(x) = exp( Sum_{n>=1} 2^(n^2-n+1) * x^n/n ), a power series in x with integer coefficients.

Original entry on oeis.org

1, 2, 6, 52, 2150, 423804, 358766428, 1257303170984, 18016913850523398, 1049450810327077624300, 247590106794776589832254260, 236013988752078034604114551553880, 907420117150975291421488593816623266780, 14052902173791695936955751957273562543384799320
Offset: 0

Views

Author

Paul D. Hanna, Feb 08 2009

Keywords

Examples

			G.f.: A(x) = 1 + 2*x + 6*x^2 + 52*x^3 + 2150*x^4 + 423804*x^5 + ...
log(A(x)) = 2*x + 2^3*x^2/2 + 2^7*x^3/3 + 2^13*x^4/4 + 2^21*x^5/5 + 2^31*x^6/6 + ...
		

Crossrefs

Cf. A155200.

Programs

  • PARI
    {a(n)=polcoeff(exp(sum(k=1,n,2^(k^2-k+1)*x^k/k)+x*O(x^n)),n)}
    for(n=0,15,print1(a(n),", "))
    
  • PARI
    {a(n)=if(n==0,1,(1/n)*sum(k=1,n,2^(k^2-k+1)*a(n-k)))}
    for(n=0,15,print1(a(n),", "))

Formula

a(n) = (1/n)*Sum_{k=1..n} 2^(k^2-k+1) * a(n-k) for n>0, with a(0)=1.
a(n) ~ 2^(n^2 - n + 1) / n. - Vaclav Kotesovec, Oct 07 2020

Extensions

Terms a(12) and beyond from Andrew Howroyd, Jan 05 2020

A157315 G.f.: A(x) = sin( Sum_{n>=0} 2^((2n+1)^2) * C(2n,n)/4^n * x^(2n+1)/(2n+1) ); alternating zeros omitted.

Original entry on oeis.org

2, 84, 2516412, 25131689308776, 73459034127708442263660, 59475400379433834763260101514326040, 12984879931670595437855043594849682375333268239320
Offset: 1

Views

Author

Paul D. Hanna, Mar 17 2009

Keywords

Comments

Compare g.f. to the expansion of the inverse sine of x:
arcsin(x) = Sum_{n>=0} C(2n,n)/4^n * x^(2n+1)/(2n+1).

Examples

			G.f.: A(x) = 2*x + 84*x^3 + 2516412*x^5 + 25131689308776*x^7 + ...
The inverse sine of A(x) begins:
arcsin(A(x)) = 2*x + 2^9*(2/4)*x^3/3 + 2^25*(6/4^2)*x^5/5 + 2^49*(20/4^3)*x^7/7 + 2^81*(70/4^4)*x^9/9 + ...
		

Crossrefs

Cf. A000984 (C(2n, n)), A136558, A155200.

Programs

  • Magma
    m:=30;
    R:=PowerSeriesRing(Rationals(), m);
    b:=Coefficients(R!( Sin( (&+[2^(4*j^2+2*j+1)*Binomial(2*j,j)*x^(2*j+1)/(2*j+1): j in [0..m+2]]) ) ));
    [b[2*n-1]: n in [1..Floor((m-2)/2)]]; // G. C. Greubel, Mar 16 2021
    
  • Maple
    m := 30;
    S := series( sin(add(2^(4*j^2+2*j+1)*binomial(2*j,j)*x^(2*j+1)/(2*j+1), j = 0..m+2)), x, m+1);
    seq(coeff(S, x, 2*j+1), j = 0..m/2); # G. C. Greubel, Mar 16 2021
  • Mathematica
    With[{m = 30}, CoefficientList[Series[Sin[Sum[2^(4*n^2+2*n+1)*((n+1)/(2*n+1)) *CatalanNumber[n]*x^(2*n+1), {n,0,m+2}]], {x,0,m}], x]][[2 ;; ;; 2 ]] (* G. C. Greubel, Mar 16 2021 *)
  • PARI
    {a(n)=polcoeff(sin(sum(m=0,n\2,2^((2*m+1)^2)*binomial(2*m,m)/4^m*x^(2*m+1)/(2*m+1))+x*O(x^n)),n)}
    
  • Sage
    m=30
    def A157315_list(prec):
        P. = PowerSeriesRing(QQ, prec)
        return P( sin( sum(2^(4*j^2+2*j+1)*binomial(2*j,j)*x^(2*j+1)/(2*j+1) for j in [0..m+2])) ).list()
    a=A157315_list(m); [a[2*n+1] for n in (0..(m-2)/2)] # G. C. Greubel, Mar 16 2021
Previous Showing 21-30 of 49 results. Next