cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-24 of 24 results.

A155723 Numbers k such that 2*k + 9 is not prime.

Original entry on oeis.org

0, 3, 6, 8, 9, 12, 13, 15, 18, 20, 21, 23, 24, 27, 28, 30, 33, 34, 36, 38, 39, 41, 42, 43, 45, 48, 51, 53, 54, 55, 56, 57, 58, 60, 62, 63, 66, 67, 68, 69, 72, 73, 75, 76, 78, 80, 81, 83, 84, 87, 88, 89, 90, 93, 96, 97, 98, 99, 100, 102, 103, 104, 105, 106, 108, 111, 113, 114
Offset: 1

Views

Author

Vincenzo Librandi, Jan 25 2009

Keywords

Comments

2*A155724(m,n) + 9 = (2n+1)*(2m+1) are not prime and create entries of this form. Also, one less than the associate entry in A153053, two less than the associated A153052. - R. J. Mathar, Jan 05 2011

Examples

			Distribution of the terms in the following triangular array:
   0;
   3,  8;
   6, 13, 20;
   9, 18, 27,  36;
  12, 23, 34,  45,  56;
  15, 28, 41,  54,  67,  80;
  18, 33, 48,  63,  78,  93, 108;
  21, 38, 55,  72,  89, 106, 123, 140;
  24, 43, 62,  81, 100, 119, 138, 157, 176;
  27, 48, 69,  90, 111, 132, 153, 174, 195, 216;
  30, 53, 76,  99, 122, 145, 168, 191, 214, 237, 260;
  33, 58, 83, 108, 133, 158, 183, 208, 233, 258, 283, 308;
  36, 63, 90, 117, 144, 171, 198, 225, 252, 279, 306, 333, 360;
  etc.
the values of (2*h*k + k + h - 4) with h >= k >= 1. - _Vincenzo Librandi_, Jan 16 2013
		

Crossrefs

Programs

A023245 Primes that remain prime through 2 iterations of the function f(x) = 2x + 9.

Original entry on oeis.org

5, 11, 19, 31, 59, 61, 71, 101, 109, 151, 179, 239, 241, 269, 281, 389, 409, 439, 449, 521, 571, 641, 659, 719, 829, 911, 971, 1051, 1061, 1181, 1201, 1229, 1319, 1361, 1439, 1579, 1669, 1699, 1741, 1831, 1949, 2269, 2341, 2371, 2521, 2549, 2579, 2609, 2671
Offset: 1

Views

Author

Keywords

Comments

Primes p such that 2*p+9 and 4*n+27 are also primes. - Vincenzo Librandi, Aug 04 2010

Crossrefs

Subsequence of A023207 and A155722.

Programs

  • Magma
    [n: n in [0..100000] | IsPrime(n) and IsPrime(2*n+9) and IsPrime(4*n+27)] // Vincenzo Librandi, Aug 04 2010
    
  • Mathematica
    Select[Prime[Range[500]],And@@PrimeQ[Rest[NestList[2#+9&,#,2]]]&]  (* Harvey P. Dale, Mar 23 2011 *)
  • PARI
    isok(n) = isprime(n) && isprime(2*n+9) && isprime(4*n+27); \\ Michel Marcus, Sep 12 2016

A023276 Primes that remain prime through 3 iterations of function f(x) = 2x + 9.

Original entry on oeis.org

5, 11, 31, 71, 281, 521, 911, 1181, 2371, 2521, 3391, 3701, 4211, 4931, 5051, 7211, 7411, 8221, 8431, 8461, 8501, 8641, 8951, 9601, 9871, 10301, 11981, 12421, 13121, 13921, 14591, 16381, 16451, 16901, 16931, 17791, 17881, 19391, 19751, 21991, 23021
Offset: 1

Views

Author

Keywords

Comments

Primes p such that 2*p+9, 4*p+27 and 8*p+63 are also primes. - Vincenzo Librandi, Aug 04 2010

Crossrefs

Subsequence of A023207, A023245, and of A155722.

Programs

  • Magma
    [n: n in [1..100000] | IsPrime(n) and IsPrime(2*n+9) and IsPrime(4*n+27) and IsPrime(8*n+63)] // Vincenzo Librandi, Aug 04 2010
    
  • Maple
    A023276:=n->`if`(isprime(n) and isprime(2*n+9) and isprime(4*n+27) and isprime(8*n+63), n, NULL): seq(A023276(n), n=1..10^5); # Wesley Ivan Hurt, Feb 11 2017
  • Mathematica
    Select[Prime@ Range@ 2600, Times @@ Boole@ PrimeQ@ Rest@ NestList[2 # + 9 &, #, 3] > 0 &] (* Michael De Vlieger, Sep 19 2016 *)
    Select[Prime[Range[3000]],AllTrue[Rest[NestList[2#+9&,#,3]],PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Jan 01 2017 *)
  • PARI
    is(n)=isprime(n) && isprime(2*n+9) && isprime(4*n+27) && isprime(8*n+63) \\ Charles R Greathouse IV, Sep 20 2016

Formula

a(n) == 1 (mod 10) for n > 1. - John Cerkan, Sep 16 2016

A288246 Numbers k such that 8*k^3 + 81 is prime.

Original entry on oeis.org

1, 4, 8, 10, 11, 13, 20, 26, 29, 34, 35, 43, 46, 50, 53, 56, 68, 70, 71, 85, 86, 94, 95, 98, 125, 130, 131, 139, 149, 154, 160, 161, 163, 169, 170, 178, 184, 194, 196, 199, 208, 215, 229, 239, 259, 266, 269, 271, 280, 283, 286, 290, 298, 305, 313
Offset: 1

Views

Author

Vincenzo Librandi, Jun 07 2017

Keywords

Examples

			a(1) = 1 because 8*1 + 81 = 89 is prime.
a(2) = 4 because 8*4^3 + 81 = 593 is prime.
		

Crossrefs

Cf. A155722: Numbers k such that 2*k + 9 is prime.
Cf. A002971: Numbers k such that 4*k^2 + 25 is prime.

Programs

  • Magma
    [n: n in [0..500] |IsPrime(8*n^3+81)];
  • Mathematica
    Select[Range[500], PrimeQ[8 #^3 + 81] &]
Previous Showing 21-24 of 24 results.