cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 20 results.

A220420 Express the Sum_{n>=0} p(n)*x^n, where p(n) is the partition function, as a product Product_{k>=1} (1 + a(k)*x^k).

Original entry on oeis.org

1, 2, 1, 4, 1, 0, 1, 14, 1, -4, 1, -8, 1, -16, 1, 196, 1, -54, 1, -92, 1, -184, 1, 144, 1, -628, 1, -1040, 1, -2160, 1, 41102, 1, -7708, 1, -12932, 1, -27592, 1, 54020, 1, -98496, 1, -173720, 1, -364720, 1, 853624, 1, -1341970, 1, -2383916, 1, -4918536, 1
Offset: 1

Views

Author

Michel Marcus, Dec 14 2012

Keywords

Comments

This is the PPE (power product expansion) of A000041.
When n is odd, a(n) = 1.
When n is even, a(n) = 2, 4, 0, 14, -4, -8, -16, 196, -54, -92, -184, 144, -628, -1040, -2160, 41102, ...
Alkauskas (2016, Problem 3, p. 3) conjectured that a(8*k+2), a(8*k+4), and a(8*k+6) are all negative, and a(8*k) is positive for k >= 1. [This statement is not wholly true for k = 0.] - Petros Hadjicostas, Oct 07 2019

Crossrefs

Programs

  • Mathematica
    terms = 55; sol[0] = {};
    sol[m_] := sol[m] = Join[sol[m - 1], If[OddQ[m], {a[m] -> 1}, First @ Solve[Thread[Table[PartitionsP[n], {n, 0, m}] == CoefficientList[ (Product[1 + a[n]*x^n, {n, 1, m}] /. sol[m - 1]) + O[x]^(m + 1), x]]]]];
    Array[a, terms] /. sol[terms] (* Jean-François Alcover, Dec 06 2018, corrected Oct 03 2019 *)
    (* Second program: *)
    A[m_, n_] := A[m, n] = Which[m == 1, PartitionsP[n], m > n >= 1, 0, True, A[m - 1, n] - A[m - 1, m - 1]*A[m, n - m + 1] ];
    a[n_] := A[n, n];
    a /@ Range[1, 55] (* Jean-François Alcover, Oct 03 2019, using the formula given by Petros Hadjicostas *)
  • PARI
    a(m) = {default(seriesprecision, m+1); ak = vector(m); pol = 1 / eta(x + x * O(x^m)); ak[1] = polcoeff(pol, 1); for (k=2, m, pol = taylor(pol / (1+ak[k-1]*x^(k-1)), x); ak[k] = polcoeff(pol, k, x);); for (k=1, m, print1(ak[k], ", "););}

Formula

From Petros Hadjicostas, Oct 04 2019: (Start)
Define (A(m,n): n,m >= 1) by A(m=1,n) = p(n) = A000041(n) for n >= 1, A(m,n) = 0 for m > n >= 1 (upper triangular), and A(m,n) = A(m-1,n) - A(m-1,m-1) * A(m,n-m+1) for n >= m >= 2. Then a(n) = A(n,n). [Theorem 3 in Gingold et al. (1988).]
a(n) = Sum_{s|n} s/n + Sum_{s|n, s > 1} (-a(n/s))^s/s. [Eq. (1) in Alkauskas (2008, 2009).]
(End)

A328186 Write 1/(1 + sin x) = Product_{n>=1} (1 + f_n x^n); a(n) = denominator(f_n).

Original entry on oeis.org

1, 1, 6, 6, 120, 360, 5040, 2520, 72576, 1814400, 39916800, 59875200, 1245404160, 21794572800, 1307674368000, 81729648000, 71137485619200, 3201186852864000, 121645100408832000, 12164510040883200, 10218188434341888000, 281000181944401920000, 25852016738884976640000
Offset: 1

Views

Author

Petros Hadjicostas, Oct 06 2019

Keywords

Comments

The recurrence about (A(m,n): m,n >= 1) in the Formula section follows from Theorem 3 in Gingold et al. (1988); see also Gingold and Knopfmacher (1995, p. 1222). A(m=1,n) equals the n-th coefficient of the Taylor expansion of 1/(1 + sin(x)). For that coefficient, we use a modification of a formula by Peter Luschny in the documentation of sequences A099612 and A099617.
Write 1 + sin x = Product_{n>=1} (1 + g_n * x^n). We have A170914(n) = numerator(g_n) and A170915(n) = denominator(g_n).
Gingold and Knopfmacher (1995) and Alkauskas (2008, 2009) proved that f_n = -g_n for n odd, and Sum_{s|n} (-g_{n/s})^s/s = -Sum_{s|n} (-f_{n/s})^s/s. [We caution that different authors may use -g_n for g_n, or -f_n for f_n, or both.]
Wolfdieter Lang (see the link below) examined inverse power product expansions both for ordinary g.f.'s and for exponential g.f.'s. He connects inverse power product expansions to unital series associated to (infinite dimensional) Witt vectors and to the so-called "Somos transformation".
There are more formulas for f_n and g_n in the references listed below. In all cases, we assume the g.f.'s are unital, i.e., the g.f.'s start with a constant 1.

Examples

			f_n = -1, 1, 1/6, 5/6, 19/120, -47/360, 659/5040, 1837/2520, 7675/72576, -154729/1814400, 3578279/39916800, 3984853/59875200, 95259767/1245404160, ...
		

Crossrefs

Numerators are in A328191.

Programs

  • Maple
    # Calculates the fractions f_n (choose L much larger than M):
    PPE := proc(L, M)
    local t1, t0, g, t2, n, t3;
    if L < 2.5*M then print("Choose larger value for L");
    else
    t1 := 1/(1 + sin(x));
    t0 := series(t1, x, L);
    f := []; t2 := t0;
    for n to M do
    t3 := coeff(t2, x, n);
    t2 := series(t2/(1 + t3*x^n), x, L);
    f := [op(f), t3];
    end do;
    end if;
    [seq(f[n], n = 1 .. nops(f))];
    end proc;
    # Calculates the denominators of f_n:
    h := map(denom, PPE(100, 40)); # Petros Hadjicostas, Oct 06 2019 by modifying N. J. A. Sloane's program from A170912 and A170913.
  • Mathematica
    A[m_, n_] :=
      A[m, n] =
       Which[m == 1, 2*(-1)^n*I^(n + 2)*PolyLog[-(n + 1), -I]/n!,
        m > n >= 1, 0, True,
        A[m - 1, n] - A[m - 1, m - 1]*A[m, n - m + 1]];
    a[n_] := Denominator[A[n, n]];
    a /@ Range[1, 55] (* Petros Hadjicostas, Oct 06 2019 using a program by Jean-François Alcover and a formula from A099612 and A099617 *)

Formula

a(2*n + 1) = A170915(2*n + 1) for n >= 0.
Define (A(m,n): n,m >= 1) by A(m=1, n) = 2 * (-1)^n * i^(n + 2) * PolyLog(-(n + 1), -i)/n! for n >= 1 (with i := sqrt(-1)), A(m,n) = 0 for m > n >= 1 (upper triangular), and A(m,n) = A(m-1,n) - A(m-1,m-1) * A(m,n-m+1) for n >= m >= 2. Then f_n = A(n,n) and thus a(n) = denominator(A(n,n)).
If we write 1 + sin x = Product_{n>=1} (1 + g_n * x^n) and we know (g_n: n >= 1), then f_n = -g_n + Sum_{s|n, s > 1} (1/s) * ((-f_{n/s})^s + (-g_{n/s})^s). This proves of course that f_n = -g_n for n odd.

A328191 Write 1/(1 + sin x) = Product_{n>=1} (1 + f_n x^n); a(n) = numerator(f_n).

Original entry on oeis.org

-1, 1, 1, 5, 19, -47, 659, 1837, 7675, -154729, 3578279, 3984853, 95259767, -1364856587, 85215100151, 46900690817, 4180679675171, -157452879103733, 6399968826052559, 893237028559439, 478887035449041839, -11642446645024341437, 1123931378903214542099, 15392026390952264029
Offset: 1

Views

Author

Petros Hadjicostas, Oct 07 2019

Keywords

Comments

The recurrence about (A(m,n): m,n >= 1) in the Formula section follows from Theorem 3 in Gingold et al. (1988); see also Gingold and Knopfmacher (1995, p. 1222). A(m=1,n) equals the n-th coefficient of the Taylor expansion of 1/(1 + sin(x)). For that coefficient, we use a modification of a formula by Peter Luschny in the documentation of sequences A099612 and A099617.
Write 1 + sin x = Product_{n>=1} (1 + g_n * x^n). We have A170914(n) = numerator(g_n) and A170915(n) = denominator(g_n).
Gingold and Knopfmacher (1995) and Alkauskas (2008, 2009) proved that f_n = -g_n for n odd, and Sum_{s|n} (-g_{n/s})^s/s = -Sum_{s|n} (-f_{n/s})^s/s. [We caution that different authors may use -g_n for g_n, or -f_n for f_n, or both.]
Wolfdieter Lang (see the link below) examined inverse power product expansions both for ordinary g.f.'s and for exponential g.f.'s. He connects inverse power product expansions to unital series associated to (infinite dimensional) Witt vectors and to the so-called "Somos transformation".
There are more formulas for f_n and g_n in the references listed below. In all cases, we assume the g.f.'s are unital, i.e., the g.f.'s start with a constant 1.

Examples

			f_n = -1, 1, 1/6, 5/6, 19/120, -47/360, 659/5040, 1837/2520, 7675/72576, -154729/1814400, 3578279/39916800, 3984853/59875200, 95259767/1245404160, ...
		

Crossrefs

Denominators are in A328186.

Programs

  • Maple
    # Calculates the fractions f_n (choose L much larger than M):
    PPE := proc(L, M)
    local t1, t0, g, t2, n, t3;
    if L < 2.5*M then print("Choose larger value for L");
    else
    t1 := 1/(1 + sin(x));
    t0 := series(t1, x, L);
    f := []; t2 := t0;
    for n to M do
    t3 := coeff(t2, x, n);
    t2 := series(t2/(1 + t3*x^n), x, L);
    f := [op(f), t3];
    end do;
    end if;
    [seq(f[n], n = 1 .. nops(f))];
    end proc;
    # Calculates the numerators of f_n:
    h:=map(numer, PPE(100, 40)); # Petros Hadjicostas, Oct 07 2019 by modifying N. J. A. Sloane's program from A170912 and A170913.
  • Mathematica
    A[m_, n_] :=
      A[m, n] =
       Which[m == 1, 2*(-1)^n*I^(n + 2)*PolyLog[-(n + 1), -I]/n!,
        m > n >= 1, 0, True,
        A[m - 1, n] - A[m - 1, m - 1]*A[m, n - m + 1]];
    a[n_] := Numerator[A[n, n]];
    a /@ Range[1, 55] (* Petros Hadjicostas, Oct 07 2019 using a program by Jean-François Alcover and a formula from A099612 and A099617 *)

Formula

a(2*n + 1) = -A170914(2*n + 1) for n >= 0.
Define (A(m,n): n,m >= 1) by A(m=1, n) = 2 * (-1)^n * i^(n + 2) * PolyLog(-(n + 1), -i)/n! for n >= 1 (with i := sqrt(-1)), A(m,n) = 0 for m > n >= 1 (upper triangular), and A(m,n) = A(m-1,n) - A(m-1,m-1) * A(m,n-m+1) for n >= m >= 2. Then f_n = A(n,n) and thus a(n) = numerator(A(n,n)).
If we write 1 + sin x = Product_{n>=1} (1 + g_n * x^n) and we know (g_n: n >= 1), then f_n = -g_n + Sum_{s|n, s > 1} (1/s) * ((-f_{n/s})^s + (-g_{n/s})^s). This proves of course that f_n = -g_n for n odd.

A170917 Write sin(x)/x = Product_{n>=1} (1 + g_n*x^(2*n)); a(n) = denominator(g_n).

Original entry on oeis.org

6, 120, 840, 362880, 14968800, 9340531200, 49037788800, 3201186852864000, 8485288812000, 182467650613248000, 908859963476424960000, 1424498881530396672000000, 10633661572674172032000000, 8289151869130970582384640000000, 1720739115690134518218240000000, 97858575719142221963014963200000000
Offset: 1

Views

Author

N. J. A. Sloane, Jan 30 2010

Keywords

Examples

			-1/6, 1/120, 1/840, 73/362880, 353/14968800, 36499/9340531200, 24257/49037788800, ...
		

Crossrefs

Programs

  • Maple
    t1:=sin(x)/x;
    L:=100;
    t0:=series(t1, x, L):
    g:=[]; M:=40; t2:=t0:
    for n from 1 to M do
    t3:=coeff(t2, x, n); t2:=series(t2/(1+t3*x^n), x, L); g:=[op(g), t3];
    od:
    g;
    h:=[seq(g[2*n], n=1..nops(g)/2)];
    h1:=map(numer, h);
    h2:=map(denom, h); # Petros Hadjicostas, Oct 04 2019 by modifying N. J. A. Sloane's program from A170912 and A170913

A170918 a(n) = numerator of the coefficient c(n) of x^n in (tan x)/Product_{0 < k < n} 1 + c(k)*x^k, n = 1, 2, 3, ...

Original entry on oeis.org

1, -1, 7, -14, 54, -1112, 6574, -48488, 1143731, -14813072, 16252211, -3500388967, 125127865048, -158589803803, 33133618166566, -30512906279732, 4378989933312913, -330336346477870319, 1981395373839282068, -251479418962683770473, 79893293800974935213, -31493610597939643431532
Offset: 1

Views

Author

N. J. A. Sloane, Jan 30 2010

Keywords

Examples

			1, -1, 7/3, -14/3, 54/5, -1112/45, 6574/105, -48488/315, 1143731/2835, ...
		

Crossrefs

Cf. A170919 (denominators), A170910-A170917.
Cf. A353583 / A353584 for power product expansion of 1 + tan x.
Cf. A353586 / A353587 for power product expansion of (tan x)/x.

Programs

  • Maple
    t1:=tan(x);
    L:=100;
    t0:=series(t1,x,L):
    g:=[]; M:=40; t2:=t0:
    for n from 1 to M do
    t3:=coeff(t2,x,n); t2:=series(t2/(1+t3*x^n),x,L); g:=[op(g),t3];
    od:
    g;
    g1:=map(numer,g);
    g2:=map(denom,g);
  • PARI
    t=tan(x+O(x)^25); vector(#t,n,c=polcoef(t,n);t/=1+c*x^n;numerator(c)) \\ M. F. Hasler, May 07 2022

Extensions

Following a suggestion from Ilya Gutkovskiy, name corrected so that it matches the data by M. F. Hasler, May 07 2022

A170916 Write sin(x)/x = Product_{n>=1} (1 + g_n*x^(2*n)); a(n) = numerator(g_n).

Original entry on oeis.org

-1, 1, 1, 73, 353, 36499, 24257, 302426881, 87721, 348958703, 226786069421, 62199570679633, 62531659610839, 8559230855533306387, 235495453816743509, 2644298730170939345197, 281737789368631676609, 39043444996461526437828311, 6203284926188598376335167
Offset: 1

Views

Author

N. J. A. Sloane, Jan 30 2010

Keywords

Examples

			-1/6, 1/120, 1/840, 73/362880, 353/14968800, 36499/9340531200, 24257/49037788800, ...
		

Crossrefs

Programs

  • Maple
    t1:=sin(x)/x;
    L:=100;
    t0:=series(t1, x, L):
    g:=[]; M:=40; t2:=t0:
    for n from 1 to M do
    t3:=coeff(t2, x, n); t2:=series(t2/(1+t3*x^n), x, L); g:=[op(g), t3];
    od:
    g;
    h:=[seq(g[2*n], n=1..nops(g)/2)];
    h1:=map(numer, h);
    h2:=map(denom, h); # Petros Hadjicostas, Oct 04 2019 by modifying N. J. A. Sloane's program from A170912 and A170913

A170923 a(n) = denominator of the coefficient c(n) of x^n in sqrt(1+x)/Product_{k=1..n-1} 1 + c(k)*x^k, n = 1, 2, 3, ...

Original entry on oeis.org

2, 8, 8, 128, 32, 512, 128, 32768, 128, 32768, 2048, 2097152, 8192, 2097152, 32768, 2147483648, 131072, 16777216, 524288, 34359738368, 2097152, 8589934592, 8388608, 35184372088832, 524288, 549755813888, 33554432, 562949953421312, 536870912, 35184372088832
Offset: 1

Views

Author

N. J. A. Sloane, Jan 31 2010

Keywords

Crossrefs

Cf. A170922 (numerators).
Cf. A353583 / A353584 for power product expansion of 1 + tan x.
Cf. A353586 / A353587 for power product expansion of (tan x)/x.

Programs

  • Maple
    L := 32: g := NULL:
    t := series(sqrt(1+x), x, L):
    for n from 1 to L-2 do
       c := coeff(t, x, n);
       t := series(t/(1 + c*x^n), x, L);
       g := g, c;
    od: map(denom, [g]); # Peter Luschny, May 12 2022

Extensions

Following a suggestion from Ilya Gutkovskiy, name corrected so that it matches the data by Peter Luschny, May 12 2022

A157163 Product_{n>=1} (1 + 2*a(n)*x^n) = Sum_{k>=0} binomial(2*k, k)*x^k = 1/sqrt(1 - 4*x), with the central binomial numbers A000984(n).

Original entry on oeis.org

1, 3, 4, 27, 48, 156, 576, 2955, 7168, 27792, 95232, 352188, 1290240, 5105856, 17743872, 77010795, 252641280, 1000224768, 3616800768, 14484040464, 52102692864, 208963943424, 764877471744, 3025006038012, 11258183024640, 44968060784640, 166308918329344
Offset: 1

Views

Author

Wolfdieter Lang, Aug 10 2009

Keywords

Comments

In the original problem 2*a(n) = [2, 6, 8, 54, 96, 312, 1152, 5910, 14336, 55584, 190464, 704376, ...] appears.

Examples

			Recurrence I: a(4) = binomial(8, 4)/2 - 2*a(1)*a(3) = 35 - 8 = 27.
Recurrence II: a(4) = (1/2)*(1/2)*(-2*a(2))^2 + (1/2)*(1*cbi(4) - (1/2)*(2*cbi(1)*cbi(3) + 1*cbi(2)^2) + (1/3)*3*cbi(1)^2*cbi(2)) = 27.
Recurrence II (rewritten): a(4)= (1/8)*((-2)^4 + 2*(-2*a(2))^2 + (1/2)*4^4) = 27.
		

Crossrefs

Cf. A147542 (Fibonacci), A157161 (Catalan).

Programs

  • Maple
    N:= 100: # for a(1)..a(N)
    S:= convert(series(-ln(1-4*x)/2,x,N+1),polynom):
    for n from 1 to N do
      a[n]:= coeff(S,x,n)/2;
      S:= S - add((-1)^(k-1)*(2*a[n])^k*x^(k*n)/k, k=1..N/n)
    od:
    seq(a[n],n=1..N); # Robert Israel, Jan 03 2019
  • PARI
    a(n) = if (n==1, 1, (1/(2*n))*((-2*a(1))^n + sumdiv(n, d, if ((d!=1) && (d!=n), d*(-2*a(d))^(n/d), 0)) + 4^n/2)); \\ after 2nd Recurrence II; Michel Marcus, Jul 06 2015

Formula

Recurrence I: With FP(n,m) the set of partitions of n with m distinct parts (which could be called fermionic partitions fp):
a(n) = binomial(2*n, n)/2 - Sum_{m=2..maxm(n)} 2^(m-1)*(Sum_{fp from FP(n,m)} (Product_{j=1..m} a(k[j]))), with maxm(n) = A003056(n) and the distinct parts k[j], j = 1..m, of the partition fp of n, n >= 3. Inputs a(1) = 1, a(2) = 3. See the array A008289(n,m) for the cardinality of the set FP(n,m).
Recurrence II: With P(n,m) the set of all partitions of n with m parts, and the multinomial numbers M0 (given for every partition under A048996):
a(n) = (1/2)*Sum_{d|n, 1= 2; a(1) = 1, with cbi(n) = binomial(2*n, n) = A000984(n). The exponents e(j) >= 0 satisfy Sum_{j=1..n} j*e(j) =n and Sum_{j=1..n} e(j) = m. The M0 numbers are m!/(Product_{j=1..n} (e(j))!).
Recurrence II (rewritten, due to email from V. Jovovic, Mar 10 2009):
a(n) = ((-2*a(1))^n + Sum_{d|n, 1

A170922 a(n) = numerator of the coefficient c(n) of x^n in sqrt(1+x)/Product_{k=1..n-1} 1 + c(k)*x^k, n = 1, 2, 3, ...

Original entry on oeis.org

1, -1, 1, -13, 3, -37, 9, -1861, 7, -1491, 93, -81001, 315, -69705, 1083, -63586357, 3855, -438821, 13797, -822684711, 49689, -186369117, 182361, -704368012465, 10485, -10165801275, 619549, -9738266477517, 9256395, -566066862375, 34636833, -140047960975823893
Offset: 1

Author

N. J. A. Sloane, Jan 31 2010

Keywords

Examples

			1/2, -1/8, 1/8, -13/128, 3/32, -37/512, 9/128, -1861/32768, ...
		

Crossrefs

Cf. A170923 (denominators).
Cf. A353583 / A353584 for power product expansion of 1 + tan x.
Cf. A353586 / A353587 for power product expansion of (tan x)/x.

Programs

  • Maple
    L := 34: g := NULL:
    t := series(sqrt(1+x), x, L):
    for n from 1 to L-2 do
       c := coeff(t, x, n);
       t := series(t/(1 + c*x^n), x, L);
       g := g, c;
    od: map(numer, [g]); # Peter Luschny, May 12 2022

Extensions

Following a suggestion from Ilya Gutkovskiy, name corrected so that it matches the data by Peter Luschny, May 12 2022

A170924 a(n) = numerator of the coefficient c(n) of x^n in (1/sqrt(1-x))/Product_{k=1..n-1} 1 + c(k)*x^k, n = 1, 2, 3, ...

Original entry on oeis.org

1, 3, 1, 27, 3, 39, 9, 2955, 7, 1737, 93, 88047, 315, 79779, 1083, 77010795, 3855, 488391, 13797, 905252529, 49689, 204066351, 182361, 756251509503, 10485, 10978530465, 619549, 10462007147787, 9256395, 603860858253, 34636833, 150202954242966315
Offset: 1

Author

N. J. A. Sloane, Jan 31 2010

Keywords

Examples

			1/2, 3/8, 1/8, 27/128, 3/32, 39/512, 9/128, 2955/32768, 7/128, ...
		

Crossrefs

Cf. A170923 (denominators).
Cf. A353583 / A353584 for power product expansion of 1 + tan x.
Cf. A353586 / A353587 for power product expansion of (tan x)/x.

Programs

  • Maple
    L := 34: g := NULL:
    t := series(1/sqrt(1 - x), x, L):
    for n from 1 to L-2 do
       c := coeff(t, x, n);
       t := series(t/(1 + c*x^(n)), x, L);
       g := g, c;
    od: map(numer, [g]); # Peter Luschny, May 12 2022

Extensions

Following a suggestion from Ilya Gutkovskiy, name corrected so that it matches the data by Peter Luschny, May 12 2022
Previous Showing 11-20 of 20 results.