cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A158720 Primes p such that Floor[p/3]+p is prime.

Original entry on oeis.org

2, 13, 31, 67, 73, 103, 181, 193, 211, 307, 337, 433, 463, 571, 577, 607, 643, 661, 733, 757, 787, 823, 937, 967, 991, 1021, 1117, 1201, 1291, 1567, 1597, 1621, 1723, 1783, 1831, 1993, 2017, 2083, 2143, 2251, 2281, 2287, 2341, 2377, 2521, 2593, 2647, 2713
Offset: 1

Views

Author

Keywords

Comments

Floor[13/3]+13=17, ...

Crossrefs

Programs

  • Mathematica
    lst={};Do[p=Prime[n];If[PrimeQ[Floor[p/3]+p],AppendTo[lst,p]],{n,6!}];lst

A158721 Primes p such that (p + 1)/3 + p is prime.

Original entry on oeis.org

2, 5, 17, 23, 53, 59, 113, 149, 167, 179, 197, 233, 269, 347, 359, 449, 557, 563, 617, 647, 683, 743, 773, 797, 827, 863, 977, 1049, 1103, 1187, 1319, 1367, 1373, 1409, 1499, 1583, 1607, 1733, 1787, 1877, 1907, 1913, 1997, 2003, 2039, 2267, 2309, 2339
Offset: 1

Views

Author

Keywords

Comments

Original title was "Primes p such that Ceiling[p/3] + p is prime." If p = 1 mod 6, then p/3 falls between 2 and 3 mod 6, and the ceiling function bumps it up to 3 mod 6. Therefore ceiling(p/3) + p = 4 mod 6, which is an even number greater than 2 and therefore obviously composite.
Therefore the ceiling function is only necessary when the primality testing function requires an integer argument.
And so, aside from 2, all terms are congruent to 5 mod 6.
Set q = (p + 1)/3 + p, then (p + 1)/(q + 1) = 3/4. If this sequence is proven infinite, that would prove two specific cases of the Schinzel-SierpiƄski conjecture regarding rational numbers. - Alonso del Arte, Mar 12 2016

Examples

			2 is in the sequence because (2 + 1)/3 + 2 = 1 + 2 = 3, which is prime.
5 is in the sequence because (5 + 1)/3 + 5 = 2 + 5 = 7, which is prime.
11 is not in the sequence because (11 + 1)/3 + 11 = 15 = 3 * 5.
		

Crossrefs

Programs

Extensions

Title simplified by Alonso del Arte, Mar 12 2016

A164621 Primes p such that p*floor(p/2)-2 and p*floor(p/2)+2 are also prime numbers.

Original entry on oeis.org

7, 31, 79, 211, 271, 751, 787, 1231, 1447, 1459, 2347, 2551, 3727, 5119, 6427, 6691, 8467, 8707, 9007, 10099, 10531, 10567, 10831, 11959, 18691, 21487, 22039, 22567, 23059, 23167, 23371, 24379, 24499, 25171, 26371, 27967, 28579, 28591, 29287
Offset: 1

Views

Author

Keywords

Examples

			7*3-2=13, 7*3+2=17,..
		

Crossrefs

Programs

  • Mathematica
    lst={};Do[p=Prime[n];If[PrimeQ[p*Floor[p/2]-2]&&PrimeQ[p*Floor[p/2]+2],AppendTo[lst,p]],{n,2*7!}];lst
    Select[Prime[Range[3200]],AllTrue[# Floor[#/2]+{2,-2},PrimeQ]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jun 04 2020 *)

A265761 Numerators of primes-only best approximates (POBAs) to 3/2; see Comments.

Original entry on oeis.org

2, 5, 7, 11, 17, 19, 29, 43, 47, 61, 71, 79, 89, 101, 107, 109, 151, 163, 191, 197, 223, 227, 251, 269, 271, 317, 349, 359, 421, 439, 461, 467, 521, 523, 569, 601, 613, 631, 647, 659, 673, 691, 701, 719, 811, 821, 853, 857, 881, 911, 919, 929, 947, 971, 991
Offset: 1

Views

Author

Clark Kimberling, Dec 18 2015

Keywords

Comments

Suppose that x > 0. A fraction p/q of primes is a primes-only best approximate (POBA), and we write "p/q in B(x)", if 0 < |x - p/q| < |x - u/v| for all primes u and v such that v < q, and also, |x - p/q| < |x - p'/q| for every prime p' except p. Note that for some choices of x, there are values of q for which there are two POBAs. In these cases, the greater is placed first; e.g., B(3) = (7/2, 5/2, 17/5, 13/5, 23/7, 19/7, ...). See A265759 for a guide to related sequences.

Examples

			The POBAs for 3/2 start with 2/2, 5/3, 7/5, 11/7, 17/11, 19/13, 29/19, 43/29, 47/31. For example, if p and q are primes and q > 13, then 19/13 is closer to 3/2 than p/q is.
		

Crossrefs

Programs

  • Mathematica
    x = 3/2; z = 200; p[k_] := p[k] = Prime[k];
    t = Table[Max[Table[NextPrime[x*p[k], -1]/p[k], {k, 1, n}]], {n, 1, z}];
    d = DeleteDuplicates[t]; tL = Select[d, # > 0 &] (* lower POBA *)
    t = Table[Min[Table[NextPrime[x*p[k]]/p[k], {k, 1, n}]], {n, 1, z}];
    d = DeleteDuplicates[t]; tU = Select[d, # > 0 &] (* upper POBA *)
    v = Sort[Union[tL, tU], Abs[#1 - x] > Abs[#2 - x] &];
    b = Denominator[v]; s = Select[Range[Length[b]], b[[#]] == Min[Drop[b, # - 1]] &];
    y = Table[v[[s[[n]]]], {n, 1, Length[s]}] (* POBA, A265761/A222565 *)
    Numerator[tL]   (* A104163 *)
    Denominator[tL] (* A158708 *)
    Numerator[tU]   (* A162336 *)
    Denominator[tU] (* A158709 *)
    Numerator[y]    (* A265761 *)
    Denominator[y]  (* A222565 *)

A158722 Primes p which are not in A158720 and A158721.

Original entry on oeis.org

3, 7, 11, 19, 29, 37, 41, 43, 47, 61, 71, 79, 83, 89, 97, 101, 107, 109, 127, 131, 137, 139, 151, 157, 163, 173, 191, 199, 223, 227, 229, 239, 241, 251, 257, 263, 271, 277, 281, 283, 293, 311, 313, 317, 331, 349, 353, 367, 373, 379, 383, 389, 397, 401, 409, 419
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    lst={};Do[p=Prime[n];If[ !PrimeQ[Floor[p/3]+p]&&!PrimeQ[Ceiling[p/3]+p],AppendTo[lst,p]],{n,5!}];lst

A164622 Primes p such that p*floor(p/2) - 4 and p*floor(p/2) + 4 are prime numbers.

Original entry on oeis.org

151, 463, 571, 631, 643, 991, 1063, 1171, 1831, 2083, 2311, 4951, 5023, 6211, 6703, 6763, 7723, 7951, 9043, 11383, 12163, 12391, 13183, 14851, 15031, 17431, 19231, 19543, 20143, 22051, 23143, 25951, 26371, 27283, 28351, 29131, 30643, 32803
Offset: 1

Views

Author

Keywords

Comments

151*75-4=11321 (prime), 151*75+4=11329 (prime), ..

Crossrefs

Programs

  • Mathematica
    lst={};Do[p=Prime[n];If[PrimeQ[p*Floor[p/2]-4]&&PrimeQ[p*Floor[p/2]+4],AppendTo[lst,p]],{n,8!}];lst

Extensions

Edited by Charles R Greathouse IV, Nov 02 2009

A164623 Primes p such that p*(p-1)/2-5 and p*(p-1)/2+5 are also prime numbers.

Original entry on oeis.org

13, 157, 673, 1069, 1117, 1153, 1213, 1597, 2029, 2089, 2437, 2713, 2833, 3613, 4057, 4909, 5653, 6337, 6529, 7549, 7993, 8053, 9613, 10789, 11497, 11689, 12073, 12373, 13309, 13669, 13789, 14173, 15289, 15937, 16249, 18097, 18637, 19249, 19993
Offset: 1

Views

Author

Keywords

Comments

Primes A000040(k) such that A008837(k)+-5 are also prime numbers.

Examples

			13 is in the sequence because 13*6-5=73 and 13*6+5=83 are both prime.
		

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[2300]], PrimeQ[# (# - 1)/2 - 5] && PrimeQ[# (# - 1)/2 + 5] &]
  • PARI
    forprime(p=2,10^6,my(b=binomial(p,2));if(isprime(b-5)&isprime(b+5),print1(p,", "))); /* Joerg Arndt, Apr 10 2013 */

Extensions

Edited by R. J. Mathar, Aug 20 2009
Mathematica code adapted to the definition by Bruno Berselli, Apr 10 2013

A158723 Greater of twin primes in A158720.

Original entry on oeis.org

13, 31, 73, 103, 181, 193, 433, 463, 571, 643, 661, 823, 1021, 1291, 1621, 1723, 2083, 2143, 2341, 2593, 2713, 3001, 3253, 3331, 3361, 3541, 4231, 4243, 4423, 4933, 5233, 5653, 5881, 6553, 6571, 6781, 6871, 6961, 7951, 8293, 9283, 9343, 9433, 9631, 9931
Offset: 1

Views

Author

Keywords

Comments

If prime number from sequence A158720 is twin prime, it always (?) Greater of twin primes, and none (?) of Lesser of twin primes.

Crossrefs

Programs

  • Mathematica
    lst={};Do[p=Prime[n];If[PrimeQ[Floor[p/3]+p],If[PrimeQ[p-2],AppendTo[lst,p]]],{n,7!}];lst
Previous Showing 11-18 of 18 results.