cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A159247 Numerator of Hermite(n, 1/10).

Original entry on oeis.org

1, 1, -49, -149, 7201, 37001, -1763249, -12863549, 604273601, 5749693201, -266173427249, -3141020027749, 143254364959201, 2027866381608601, -91087470841872049, -1510593937967892749, 66805009193436144001, 1275280159567750343201, -55508977654852972057649
Offset: 0

Views

Author

N. J. A. Sloane, Nov 12 2009

Keywords

Crossrefs

Programs

  • Magma
    [Numerator((&+[(-1)^k*Factorial(n)*(1/5)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Jun 10 2018
  • Mathematica
    Numerator[Table[HermiteH[n,1/10],{n,0,50}]] (* Vladimir Joseph Stephan Orlovsky, Apr 02 2011*)
  • PARI
    a(n)=numerator(polhermite(n,1/10)) \\ Charles R Greathouse IV, Jan 29 2016
    

Formula

From G. C. Greubel, Jun 10 2018: (Start)
a(n) = 5^n * Hermite(n,1/10).
E.g.f.: exp(x-25*x^2).
a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(1/5)^(n-2*k)/(k!*(n-2*k)!)). (End)
a(n) = 50*(1-n)*a(n-2)+a(n-1) for n>1. - Christian Krause, Oct 21 2024

A158961 Numerator of Hermite(n, 2/5).

Original entry on oeis.org

1, 4, -34, -536, 2956, 119024, -262904, -36758816, -55018864, 14483450944, 82692292576, -6910956301696, -73124586123584, 3854075436523264, 62947282726422656, -2446063674660594176, -56994716743459368704, 1728872072754637865984
Offset: 0

Views

Author

N. J. A. Sloane, Nov 12 2009

Keywords

Crossrefs

Programs

  • Magma
    [Numerator((&+[(-1)^k*Factorial(n)*(4/5)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Jul 09 2018
  • Mathematica
    Numerator[Table[HermiteH[n,2/5],{n,0,50}]] (* Vladimir Joseph Stephan Orlovsky, Apr 01 2011 *)
    Table[5^n*HermiteH[n, 2/5], {n,0,30}] (* G. C. Greubel, Jul 09 2018 *)
  • PARI
    a(n)=numerator(polhermite(n,2/5)) \\ Charles R Greathouse IV, Jan 29 2016
    

Formula

From G. C. Greubel, Jul 09 2018: (Start)
a(n) = 5^n * Hermite(n, 2/5).
E.g.f.: exp(4*x-25*x^2).
a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(4/5)^(n-2*k)/(k!*(n-2*k)!)). (End)
Previous Showing 11-12 of 12 results.