cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A159505 Numerator of Hermite(n, 11/13).

Original entry on oeis.org

1, 22, 146, -11660, -404564, 6863912, 834719224, 4443809392, -1877181877360, -53314061897888, 4537477909175584, 280026043216724288, -10709769915546886976, -1371400569429065225600, 16887916481473586409344, 6861001657130755548544768, 65320299895805538972610816
Offset: 0

Views

Author

N. J. A. Sloane, Nov 12 2009

Keywords

Crossrefs

Programs

  • Magma
    [Numerator((&+[(-1)^k*Factorial(n)*(22/13)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Jun 11 2018
  • Mathematica
    Numerator[Table[HermiteH[n,11/13],{n,0,50}]] (* Vladimir Joseph Stephan Orlovsky, Apr 14 2011 *)
  • PARI
    a(n)=numerator(polhermite(n,11/13)) \\ Charles R Greathouse IV, Jan 29 2016
    

Formula

From G. C. Greubel, Jun 11 2018: (Start)
a(n) = 13^n * Hermite(n,11/13).
E.g.f.: exp(22*x-169*x^2).
a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(22/13)^(n-2*k)/(k!*(n-2*k)!)). (End)

A159506 Numerator of Hermite(n, 12/13).

Original entry on oeis.org

1, 24, 238, -10512, -493620, 2365344, 890986056, 16586747712, -1709991063408, -85890351335040, 3140424382846176, 365679572700743424, -2899788110604240192, -1552791261528717092352, -24525321318694178812800, 6759200537905228989502464, 286564191995504982328955136
Offset: 0

Views

Author

N. J. A. Sloane, Nov 12 2009

Keywords

Crossrefs

Programs

  • Magma
    [Numerator((&+[(-1)^k*Factorial(n)*(24/13)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Jun 11 2018
  • Mathematica
    Numerator[Table[HermiteH[n,12/13],{n,0,50}]] (* Vladimir Joseph Stephan Orlovsky, Apr 14 2011 *)
  • PARI
    a(n)=numerator(polhermite(n,12/13)) \\ Charles R Greathouse IV, Jan 29 2016
    

Formula

From G. C. Greubel, Jun 11 2018: (Start)
a(n) = 13^n * Hermite(n,12/13).
E.g.f.: exp(24*x-169*x^2).
a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(24/13)^(n-2*k)/(k!*(n-2*k)!)). (End)
Previous Showing 11-12 of 12 results.