cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-19 of 19 results.

A348520 Pentaphobe or 5-phobe numbers: integers that are not pentaphile numbers.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 32, 33, 34, 35, 36, 37, 38, 40, 41, 42, 44, 48, 49, 50, 51, 52, 53, 54, 56, 60, 65, 66, 68, 72, 74, 80, 84, 97, 98, 102, 104, 108, 120, 132, 144, 168, 194, 240
Offset: 1

Views

Author

Bernard Schott, Nov 02 2021

Keywords

Comments

Pentaphile numbers are described in A348518.
The idea for this sequence comes from the French website Diophante (see link).
It is possible to generalize for "k-phile" or "k-phobe" numbers (see Crossrefs).
The set of k-phobe numbers is always finite and the smallest one is always 1; here, there exist 68 pentaphobe numbers and the largest one is 240.

Examples

			There are no 5 positive integers b_1 < b_2 < b_3 < b_4 < b_5 such that b_1 divides b_2, b_2 divides b_3, b_3 divides b_4, b_4 divides b_5, and 32 = b_1 + b_2 + b_3 + b_4 + b_5, hence 32 is a term.
		

Crossrefs

k-phile numbers: A160811 \ {5} (k=3), A348517 (k=4), A348518 (k=5).
k-phobe numbers: A019532 (k=3), A348519 (k=4), this sequence (k=5).

Programs

  • PARI
    isok(k) = forpart(p=k, if (#Set(p) == 5, if (!(p[2] % p[1]) && !(p[3] % p[2]) && !(p[4] % p[3]) && !(p[5] % p[4]), return(0))), , [5, 5]); return(1); \\ Michel Marcus, Nov 14 2021

A161425 a(n) = A161424(n)/2.

Original entry on oeis.org

8, 10, 12, 14, 16, 22, 26, 34, 38, 46, 58, 62, 74, 82, 86, 94, 106, 118, 122, 134, 142, 146, 158, 166, 178, 194, 202, 206, 214, 218, 226, 254, 262, 274, 278, 298, 302, 314, 326, 334, 346, 358, 362, 382, 386, 394, 398, 422, 446, 454, 458, 466, 478, 482, 502, 514
Offset: 1

Views

Author

Omar E. Pol, Jun 20 2009

Keywords

Crossrefs

Extensions

Terms beyond a(8) from R. J. Mathar, Jun 24 2009

A161339 Partial sums of A161205.

Original entry on oeis.org

1, 3, 5, 8, 12, 16, 20, 24, 29, 35, 41, 47, 53, 59, 65, 72, 80, 88, 96, 104, 112, 120, 128, 136, 145, 155, 165, 175, 185, 195, 205, 215, 225, 235, 245, 256, 268, 280, 292, 304, 316, 328, 340, 352, 364, 376, 388, 400, 413, 427, 441, 455, 469, 483, 497, 511
Offset: 1

Views

Author

Omar E. Pol, Jun 19 2009

Keywords

Crossrefs

Programs

  • Maple
    A161339 := proc(n) option remember: local s: if(n=1)then return 1: fi: s:=sqrt(n): if(frac(s)=0)then return procname(n-1)+2*s-1: else return procname(n-1)+2*floor(s): fi: end: seq(A161339(n), n=1..60); # Nathaniel Johnston, May 06 2011

A161428 a(n) = A161424(n)/4.

Original entry on oeis.org

4, 5, 6, 7, 8, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277
Offset: 1

Views

Author

Omar E. Pol, Jun 20 2009

Keywords

Crossrefs

Extensions

Terms beyond a(8) from R. J. Mathar, Jun 24 2009

A162190 Triangle read by rows in which row n lists the divisors of n, the n-th prime and the consecutive composites that are greater than the n-th prime, with a(0)=1.

Original entry on oeis.org

1, 1, 2, 1, 2, 3, 4, 1, 3, 5, 6, 1, 2, 4, 7, 8, 9, 10, 1, 5, 11, 12, 1, 2, 3, 6, 13, 14, 15, 16, 1, 7, 17, 18, 1, 2, 4, 8, 19, 20, 21, 22, 1, 3, 9, 23, 24, 25, 26, 27, 28, 1, 2, 5, 10, 29, 30, 1, 11, 31, 32, 33, 34, 35, 36, 1, 2, 3, 4, 6, 12, 37, 38, 39, 40
Offset: 0

Views

Author

Omar E. Pol, Jun 30 2009

Keywords

Examples

			Triangle begins:
1;
1,(2);
1,.2,(3),4;
1,....3,...(5),6;
1,.2,....4,......(7),8,.9,10;
1,..........5,..............(11),12;
1,.2,.3,.......6,..................(13),14,15,16;
1,................7,............................(17),18;
1,.2,....4,..........8,................................(19),20,21,22;
		

Crossrefs

A349188 Largest n-phobe number.

Original entry on oeis.org

2, 24, 48, 240, 1440, 2400, 7440, 25920, 72000, 234000
Offset: 2

Views

Author

Bernard Schott, Nov 09 2021

Keywords

Comments

A n-phile integer m is such that there are n positive integers b_1 < b_2 < ... < b_j < ... < b_n such that b_1 divides b_2, b_2 divides b_3, ..., b_[j-1] divides b_j, ..., b_[n-1] divides b_n, and m = b_1 + b_2 + ... + b_j + ... + b_n. A number that is not n-phile is called n-phobe.
The idea for this sequence and the words 'n-phile' and 'n-phobe' come from the French website Diophante (see link).
The number of n-phobe numbers is always finite (A349189), the smallest one is always 1, and this sequence lists the largest n-phobe numbers.
a(6) >= 720. - Michel Marcus, Nov 14 2021
From David A. Corneth, Nov 14 2021: (Start)
a(6) >= 1440. If a(6) > 1440 then a(6) > 50000.
a(7) >= 2400. If a(7) > 2400 then a(7) > 50000.
a(8) >= 7440. If a(8) > 7440 then a(8) > 100000.
a(9) >= 25920. If a(9) > 25920 then a(9) > 100000. (End)
Indeed, all these bounds are the corresponding values of a(6), a(7), a(8), a(9). Proof in link. For n >= 5, the five known terms are divisible by 240. - Bernard Schott, Nov 19 2021

Examples

			For n = 2, integers 1 and 2 are 2-phobe, then for m >= 3, every m = 1 + (m-1) with 1 < m-1 and 1 divides m-1, so, each m >= 3 is 2-phile number and a(2) = 2.
		

Crossrefs

Cf. A349189.
k-phile numbers: A160811 \ {5} (k=3), A348517 (k=4), A348518 (k=5).
k-phobe numbers: A019532 (k=3), A348519 (k=4), A348520 (k=5).

Extensions

a(6)-a(11) from David A. Corneth, Nov 19 2021

A349189 Number of n-phobe numbers.

Original entry on oeis.org

2, 9, 23, 68, 177, 459, 1162, 2947, 7306, 18202
Offset: 2

Views

Author

Bernard Schott, Nov 14 2021

Keywords

Comments

A n-phile integer m is such that there are n positive integers b_1 < b_2 < ... < b_j < ... < b_n with the property that b_1 divides b_2, b_2 divides b_3, ..., b_[j-1] divides b_j, ..., b_[n-1] divides b_n, and m = b_1 + b_2 + ... + b_j + ... + b_n. A number that is not n-phile is called n-phobe.
The words 'n-phile' and 'n-phobe' come from the French website Diophante (see link).
The number of n-phobe numbers is always finite, the smallest one is always 1 and the largest n-phobe number is in A349188.
a(6) >= 176. - Michel Marcus, Nov 15 2021
a(6) >= 177, a(7) >= 459, a(8) >= 1162, a(9) >= 2947. - David A. Corneth, Nov 15 2021
Indeed, all these bounds are the corresponding values of a(6), a(7), a(8) and a(9). Proof comes from Proof link in A349188. - Bernard Schott, Nov 19 2021

Examples

			For n = 2, integers 1 and 2 are 2-phobe, then for m >= 3, every m = 1 + (m-1) with 1 < m-1 and 1 divides m-1, so, each m >= 3 is 2-phile number and a(2) = 2.
		

Crossrefs

k-phile numbers: A160811 \ {5} (k=3), A348517 (k=4), A348518 (k=5).
k-phobe numbers: A019532 (k=3), A348519 (k=4), A348520 (k=5).
Cf. A349188.

Extensions

a(6)..a(11) from David A. Corneth, Nov 19 2021

A161416 Partial sums of A056737.

Original entry on oeis.org

0, 1, 3, 3, 7, 8, 14, 16, 16, 19, 29, 30, 42, 47, 49, 49, 65, 68, 86, 87, 91, 100, 122, 124, 124, 135, 141, 144, 172, 173, 203, 207, 215, 230, 232, 232, 268, 285, 295, 298, 338, 339, 381, 388, 392, 413, 459, 461, 461, 466, 480, 489, 541, 544, 550, 551, 567, 594
Offset: 1

Views

Author

Omar E. Pol, Jun 21 2009

Keywords

Crossrefs

Formula

a(n) = A219730(n) - A219729(n). - Tamas Sandor Nagy, Jan 20 2024

Extensions

Extended beyond a(16) by R. J. Mathar, Aug 01 2009

A162192 Triangle read by rows in which row n lists the divisors of n, prime(n), the consecutive composites that are greater than prime(n), and prime (n+1), but row 0 is formed by 1 and 2.

Original entry on oeis.org

1, 2, 1, 2, 3, 1, 2, 3, 4, 5, 1, 3, 5, 6, 7, 1, 2, 4, 7, 8, 9, 10, 11, 1, 5, 11, 12, 13, 1, 2, 3, 6, 13, 14, 15, 16, 17, 1, 7, 17, 18, 19, 1, 2, 4, 8, 19, 20, 21, 22, 23, 1, 3, 9, 23, 24, 25, 26, 27, 28, 29, 1, 2, 5, 10, 29, 30, 31
Offset: 0

Views

Author

Omar E. Pol, Jun 30 2009

Keywords

Comments

See also A162190, a sequence with a similar structure.

Examples

			Triangle begins:
1,(2);
1,(2),(3);
1,.2.,(3),4,(5);
1,.....3,...(5),6,(7);
1,.2,.....4,......(7),8,.9,10,(11);
1,...........5,...............(11),12,(13);
1,.2,..3,.......6,....................(13),14,15,16,(17);
1,.................7,...............................(17),18,(19);
1,.2,.....4,..........8,....................................(19),20,21,22,(23);
		

Crossrefs

Previous Showing 11-19 of 19 results.