cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 38 results. Next

A162532 Numbers k whose largest divisor <= sqrt(k) equals 12.

Original entry on oeis.org

144, 156, 168, 180, 192, 204, 216, 228, 264, 276, 348, 372, 444, 492, 516, 564, 636, 708, 732, 804, 852, 876, 948, 996, 1068, 1164, 1212, 1236, 1284, 1308, 1356, 1524, 1572, 1644, 1668, 1788, 1812, 1884, 1956, 2004, 2076, 2148, 2172, 2292, 2316, 2364
Offset: 1

Views

Author

Omar E. Pol, Jul 05 2009

Keywords

Comments

See A161344 for more information.

Crossrefs

Programs

  • Maple
    A033676 := proc(n) local dvs; dvs := sort(convert(numtheory[divisors](n),list)) ; op(floor((nops(dvs)+1)/2) ,dvs) ; end: for n from 1 to 3500 do if A033676(n) = 12 then printf("%d,",n) ; fi; od: # R. J. Mathar, Jul 13 2009
  • Mathematica
    ld12Q[n_]:=First[Select[Reverse[Divisors[n]],#<=Sqrt[n]&]]==12;Select[ 12*Range[ 200], ld12Q] (* Harvey P. Dale, Mar 29 2013 *)

Formula

Numbers k such that A033676(k)=12.

Extensions

More terms from R. J. Mathar, Jul 13 2009

A162529 Numbers k whose largest divisor <= sqrt(k) equals 9.

Original entry on oeis.org

81, 90, 99, 108, 117, 126, 135, 153, 162, 171, 189, 207, 243, 261, 279, 333, 369, 387, 423, 477, 531, 549, 603, 639, 657, 711, 747, 801, 873, 909, 927, 963, 981, 1017, 1143, 1179, 1233, 1251, 1341, 1359, 1413, 1467, 1503, 1557, 1611, 1629, 1719, 1737, 1773
Offset: 1

Views

Author

Omar E. Pol, Jul 05 2009

Keywords

Comments

See A161344 for more information.

Crossrefs

Programs

  • Maple
    A033676 := proc(n) local dvs; dvs := sort(convert(numtheory[divisors](n),list)) ; op(floor((nops(dvs)+1)/2) ,dvs) ; end: for n from 1 to 2500 do if A033676(n) = 9 then printf("%d,",n) ; fi; od: # R. J. Mathar, Jul 13 2009
  • Mathematica
    lst = {}; For[n = 1, n <= 5000, n++, If[Last[Select[Divisors[n], # <= Sqrt@n &]] == 9, PrependTo[lst, n]]]; Reverse@lst (* Jasper Mulder (jasper.mulder(AT)planet.nl), Jul 14 2009 *)

Formula

Numbers k such that A033676(k)=9.

Extensions

More terms from R. J. Mathar and Jasper Mulder (jasper.mulder(AT)planet.nl), Jul 13 2009

A162531 Numbers k whose largest divisor <= sqrt(k) is 11.

Original entry on oeis.org

121, 132, 143, 154, 165, 176, 187, 198, 209, 220, 231, 242, 253, 275, 297, 319, 341, 363, 385, 407, 451, 473, 517, 539, 583, 605, 649, 671, 737, 781, 803, 847, 869, 913, 979, 1067, 1111, 1133, 1177, 1199, 1243, 1331, 1397, 1441, 1507, 1529, 1639, 1661
Offset: 1

Views

Author

Omar E. Pol, Jul 05 2009

Keywords

Comments

See A161344 for more information.

Crossrefs

Programs

  • Maple
    A033676 := proc(n) local dvs; dvs := sort(convert(numtheory[divisors](n),list)) ; op(floor((nops(dvs)+1)/2) ,dvs) ; end: for n from 1 to 2500 do if A033676(n) = 11 then printf("%d,",n) ; fi; od: # R. J. Mathar, Jul 13 2009
  • Mathematica
    ld = 11;
    selQ[n_] := AllTrue[Divisors[n], # <= ld || #^2 > n&];
    Select[ Range[ld, 200] ld, selQ] (* Jean-François Alcover, Apr 14 2020 *)

Formula

Numbers k such that A033676(k)=11.

Extensions

More terms from R. J. Mathar and Jasper Mulder (jasper.mulder(AT)planet.nl), Jul 13 2009

A162526 Numbers k whose largest divisor <= sqrt(k) equals 6.

Original entry on oeis.org

36, 42, 48, 54, 60, 66, 78, 102, 114, 138, 174, 186, 222, 246, 258, 282, 318, 354, 366, 402, 426, 438, 474, 498, 534, 582, 606, 618, 642, 654, 678, 762, 786, 822, 834, 894, 906, 942, 978, 1002, 1038, 1074, 1086, 1146, 1158, 1182, 1194, 1266, 1338, 1362
Offset: 1

Views

Author

Omar E. Pol, Jul 05 2009

Keywords

Comments

See A161344 for more information.

Crossrefs

Programs

  • Maple
    A033676 := proc(n) local dvs; dvs := sort(convert(numtheory[divisors](n),list)) ; op(floor((nops(dvs)+1)/2) ,dvs) ; end: for n from 1 to 2000 do if A033676(n) = 6 then printf("%d,",n) ; fi; od: # R. J. Mathar, Jul 13 2009
  • Mathematica
    ld6Q[n_]:=Last[Select[Divisors[n],#<=Sqrt[n]&]]==6; Select[Range[ 1400],ld6Q] (* Harvey P. Dale, Mar 08 2012 *)

Formula

Numbers k such that A033676(k)=6.

Extensions

More terms from R. J. Mathar, Jul 13 2009

A164000 Main diagonal of array in A163280.

Original entry on oeis.org

1, 6, 15, 28, 45, 66, 91, 128, 162, 200, 231, 372, 325, 406, 495, 656, 561, 954, 703, 1180, 987, 1078, 1035, 1896, 1375, 1534, 1701, 2324, 1653, 3090, 1891, 3104, 2541, 2686, 3045, 5004, 2701, 3382, 3627, 5560, 3321, 6846, 3655, 6028, 6165, 5014, 4371
Offset: 1

Views

Author

Omar E. Pol, Aug 08 2009

Keywords

Crossrefs

Programs

  • Maple
    A033676 := proc(n) local a, d; a := 0 ; for d in numtheory[divisors](n) do if d^2 <= n then a := max(a, d) ; end if; end do: a; end proc: A163280 := proc(n, k) local r, T ; r := 0 ; for T from k^2 by k do if A033676(T) = k then r := r+1 ; if r = n then RETURN(T) ; end if; end if; end do: end proc: A164000 := proc(n) A163280(n,n) ; end proc: seq(A164000(n),n=1..60) ; # R. J. Mathar, Feb 16 2010
  • Mathematica
    nmax = 50;
    pm = Prime[nmax];
    selDiv[n_] := Select[Divisors[n], #^2 <= n&][[-1]];
    Clear[col];
    col[k_] := col[k] = Select[Range[k pm], selDiv[#] == k&];
    a[n_] := col[n][[n]];
    Array[a, nmax] (* Jean-François Alcover, Mar 24 2020 *)
  • PARI
    lista(nn) = my(v = apply(f, [1..(2*nn-1)^2]), cols = vector(nn, i, select(x->(x==i), v, 1))); vector(nn, i, cols[i][i]); \\ Michel Marcus, Jan 23 2023

Extensions

Terms from a(13) on by R. J. Mathar, Feb 16 2010

A147861 Triangle read by rows: T(n,k)=min(k, n/k) if k divides n, T(n,k)=0 otherwise (n >=1, 1<=k<=n).

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 1, 2, 0, 1, 1, 0, 0, 0, 1, 1, 2, 2, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 2, 0, 2, 0, 0, 0, 1, 1, 0, 3, 0, 0, 0, 0, 0, 1, 1, 2, 0, 0, 2, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 3, 3, 0, 2, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 1

Views

Author

Omar E. Pol, Nov 16 2008, Jul 20 2009

Keywords

Examples

			Triangle begins:
1;
1,1;
1,0,1;
1,2,0,1;
1,0,0,0,1;
1,2,2,0,0,1;
1,0,0,0,0,0,1;
1,2,0,2,0,0,0,1;
1,0,3,0,0,0,0,0,1;
1,2,0,0,2,0,0,0,0,1;
1,0,0,0,0,0,0,0,0,0,1;
1,2,3,3,0,2,0,0,0,0,0,1;
1,0,0,0,0,0,0,0,0,0,0,0,1;
1,2,0,0,0,0,2,0,0,0,0,0,0,1;
1,0,3,0,3,0,0,0,0,0,0,0,0,0,1;
1,2,0,4,0,0,0,2,0,0,0,0,0,0,0,1;
1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1;
1,2,3,0,0,3,0,0,2,0,0,0,0,0,0,0,0,1;
1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1;
1,2,0,4,4,0,0,0,0,2,0,0,0,0,0,0,0,0,0,1;
1,0,3,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,1;
1,2,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,1;
1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1;
1,2,3,4,0,4,0,3,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,1;
1,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1;
1,2,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,1;
1,0,3,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1;
1,2,0,4,0,0,4,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,1;
1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1;
1,2,3,0,5,5,0,0,0,3,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1;
...
Row sums: A117004.
		

Crossrefs

Extensions

Submitted without a definition, which was supplied by Jon E. Schoenfield, Dec 13 2008

A163100 Triangle giving positive values of A147861.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 1, 1, 3, 1, 1, 2, 2, 1, 1, 1, 1, 2, 3, 3, 2, 1, 1, 1, 1, 2, 2, 1, 1, 3, 3, 1, 1, 2, 4, 2, 1, 1, 1, 1, 2, 3, 3, 2, 1, 1, 1, 1, 2, 4, 4, 2, 1, 1, 3, 3, 1, 1, 2, 2, 1, 1, 1, 1, 2, 3, 4, 4, 3, 2, 1, 1, 5, 1, 1, 2, 2, 1, 1, 3, 3, 1, 1, 2, 4, 4, 2, 1, 1, 1, 1, 2
Offset: 1

Views

Author

Omar E. Pol, Jul 20 2009

Keywords

Examples

			Triangle begins:
1;
1,1;
1,..1;
1,2,..1;
1,......1;
1,2,2,....1;
1,..........1;
1,2,..2,......1;
1,..3,..........1;
1,2,....2,........1;
1,..................1;
1,2,3,3,..2,..........1;
1,......................1;
1,2,........2,............1;
1,..3,..3,..................1;
1,2,..4,......2,..............1;
1,..............................1;
1,2,3,....3,....2,................1;
1,..................................1;
1,2,..4,4,........2,..................1;
1,..3,......3,..........................1;
1,2,................2,....................1;
1,..........................................1;
1,2,3,4,..4,..3,......2,......................1;
1,......5,......................................1;
1,2,....................2,........................1;
1,..3,..........3,..................................1;
1,2,..4,....4,............2,..........................1;
1,......................................................1;
1,2,3,..5,5,......3,........2,............................1;
...
Row sums: A117004.
		

Crossrefs

Programs

  • Maple
    A147861 := proc(n,k) if k<=0 or k > n then 0; else if n mod k = 0 then min(k,n/k) ; else 0; fi; fi; end proc: A163100 := proc(n,k) local dvs; dvs := sort(convert(numtheory[divisors](n),list)) ; min( op(k,dvs),n/op(k,dvs)) ; end: for n from 1 to 60 do for k from 1 to numtheory[tau](n) do printf("%d,",A163100(n,k) ) ; end do; end do: # R. J. Mathar, Aug 01 2009

Extensions

Extended beyond row 12 by R. J. Mathar, Aug 01 2009

A163990 Square array read by antidiagonals where the row n lists the numbers k such that their largest divisor <= sqrt(k) equals n.

Original entry on oeis.org

1, 4, 2, 9, 6, 3, 16, 12, 8, 5, 25, 20, 15, 10, 7, 36, 30, 24, 18, 14, 11, 49, 42, 35, 28, 21, 22, 13, 64, 56, 48, 40, 32, 27, 26, 17, 81, 72, 63, 54, 45, 44, 33, 34, 19, 100, 90, 80, 70, 60, 50, 52, 39, 38, 23, 121, 110, 99, 88, 77, 66, 55, 68, 51, 46, 29, 144, 132, 120, 108
Offset: 1

Views

Author

Omar E. Pol, Aug 11 2009

Keywords

Comments

This sequence is a permutation of the natural numbers.
Note that the first row is formed by 1 together the prime numbers and the first column are the squares of the natural numbers.
For more information see A163280, the main entry for this sequence. (See also A161344).

Examples

			Array begins:
1, 2, 3, 5, 7, 11,
4, 6, 8, 10, 14,
9, 12, 15, 18,
16, 20, 24,
25, 30,
36,
See also the array in A163280.
		

Crossrefs

Formula

Row n lists the numbers k such that A033676(k)=n.

A164004 Zero together with row 4 of the array in A163280.

Original entry on oeis.org

0, 5, 10, 18, 28, 40, 54, 70, 88, 108, 130, 154, 180, 208, 238, 270, 304, 340, 378, 418, 460, 504, 550, 598, 648, 700, 754, 810, 868, 928, 990, 1054, 1120, 1188, 1258, 1330, 1404, 1480, 1558, 1638, 1720, 1804, 1890, 1978, 2068, 2160, 2254, 2350, 2448, 2548
Offset: 0

Views

Author

Omar E. Pol, Aug 08 2009

Keywords

Crossrefs

Programs

  • Maple
    A033676 := proc(n) local a,d; a := 0 ; for d in numtheory[divisors](n) do if d^2 <= n then a := max(a,d) ; fi; od: a; end: A163280 := proc(n,k) local r,T ; r := 0 ; for T from k^2 by k do if A033676(T) = k then r := r+1 ; if r = n then RETURN(T) ; fi; fi; od: end: A164004 := proc(n) if n = 0 then 0; else A163280(4,n) ; fi; end: seq(A164004(n),n=0..80) ; # R. J. Mathar, Aug 09 2009
  • Mathematica
    Join[{0, 5}, Table[n*(n + 3), {n, 2, 50}]] (* G. C. Greubel, Aug 28 2017 *)
  • PARI
    x='x+O('x^50); concat([0], Vec(x*(x^3 -3*x^2 +5*x -5)/(x-1)^3)) \\ G. C. Greubel, Aug 28 2017

Formula

Conjectures from Colin Barker, Apr 07 2015: (Start)
a(n) = n*(3+n) = A028552(n) for n > 1.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 4.
G.f.: x*(x^3 - 3*x^2 + 5*x - 5) / (x-1)^3. (End)
E.g.f.: x*(x+4)*exp(x) + x. - G. C. Greubel, Aug 28 2017

Extensions

Extended beyond a(12) by R. J. Mathar, Aug 09 2009

A164006 Zero together with row 6 of the array in A163280.

Original entry on oeis.org

0, 11, 22, 27, 44, 50, 66, 84, 104, 126, 150, 176, 204, 234, 266, 300, 336, 374, 414, 456, 500, 546, 594, 644, 696, 750, 806, 864, 924, 986, 1050, 1116, 1184, 1254, 1326, 1400, 1476, 1554, 1634, 1716, 1800, 1886, 1974, 2064, 2156, 2250, 2346, 2444, 2544, 2646
Offset: 0

Views

Author

Omar E. Pol, Aug 08 2009

Keywords

Crossrefs

Cf. A028557 for n > 4. - R. J. Mathar, Aug 09 2009

Programs

  • Maple
    A033676 := proc(n) local a,d; a := 0 ; for d in numtheory[divisors](n) do if d^2 <= n then a := max(a,d) ; fi; od: a; end: A163280 := proc(n,k) local r,T ; r := 0 ; for T from k^2 by k do if A033676(T) = k then r := r+1 ; if r = n then RETURN(T) ; fi; fi; od: end: A164006 := proc(n) if n = 0 then 0; else A163280(6,n) ; fi; end: seq(A164006(n),n=0..80) ; # R. J. Mathar, Aug 09 2009
  • Mathematica
    Join[{0,11,22,27}, Table[n*(n + 5), {n, 4, 50}]] (* G. C. Greubel, Aug 28 2017 *)
  • PARI
    concat(0, Vec(x*(8*x^6-21*x^5+23*x^4-18*x^3+6*x^2+11*x-11)/(x-1)^3 + O(x^100))) \\ Colin Barker, Nov 24 2014

Formula

From Colin Barker, Nov 24 2014: (Start)
a(n) = n*(n+5) for n > 4.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 7.
G.f.: x*(8*x^6 - 21*x^5 + 23*x^4 - 18*x^3 + 6*x^2 + 11*x - 11) / (x-1)^3. (End)
E.g.f.: (x/2)*(10 + 8*x + x^2 + 2*(x + 6)*exp(x)). - G. C. Greubel, Aug 28 2017

Extensions

Extended beyond a(12) by R. J. Mathar, Aug 09 2009
Previous Showing 11-20 of 38 results. Next