cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-21 of 21 results.

A161698 Number of reduced words of length n in the Weyl group B_5.

Original entry on oeis.org

1, 5, 14, 30, 54, 86, 125, 169, 215, 259, 297, 325, 340, 340, 325, 297, 259, 215, 169, 125, 86, 54, 30, 14, 5, 1
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Nov 30 2009

Keywords

Comments

Computed with MAGMA using commands similar to those used to compute A161409.

References

  • J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See under PoincarĂ© polynomial.
  • N. Bourbaki, Groupes et algèbres. de Lie, Chap. 4, 5, 6. (The group is defined in Planche II.)

Crossrefs

The growth series for the finite Coxeter (or Weyl) groups B_2 through B_12 are A161696-A161699, A161716, A161717, A161733, A161755, A161776, A161858. These are all rows of A128084. The growth series for the affine Coxeter (or Weyl) groups B_2 through B_12 are A008576, A008137, A267167-A267175.

Programs

  • Magma
    m:=26; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((&*[1-t^(2*k): k in [1..5]])/(1-t)^5)); // G. C. Greubel, Oct 25 2018
  • Maple
    seq(coeff(series(mul((1-x^(2*k))/(1-x),k=1..5),x,n+1), x, n), n = 0 .. 25); # Muniru A Asiru, Oct 25 2018
  • Mathematica
    CoefficientList[Series[Product[(1-x^(2*k)), {k,1,5}] /(1-x)^5, {x,0,25}], x] (* G. C. Greubel, Oct 25 2018 *)
  • PARI
    t='t+O('t^26); Vec(prod(k=1,5,1-t^(2*k))/(1-t)^5) \\ G. C. Greubel, Oct 25 2018
    

Formula

G.f. for B_m is the polynomial Prod_{k=1..m}(1-x^(2k))/(1-x). Only finitely many terms are nonzero. This is a row of the triangle in A128084.
Previous Showing 21-21 of 21 results.