A161951
Base-14 Armstrong or narcissistic numbers (written in base 10).
Original entry on oeis.org
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 244, 793, 282007, 10362564, 1445712420, 29546248981, 164159496751, 342515735622, 359057049845, 216210334578515, 324075236456868, 338527182572746, 338609726265795, 382789516519507, 435198066019184, 526088332647250
Offset: 1
In other bases:
A010344 (base 4),
A010346 (base 5),
A010348 (base 6),
A010350 (base 7),
A010354 (base 8),
A010353 (base 9),
A005188 (base 10),
A161948 (base 11),
A161949 (base 12),
A161950 (base 13),
A161952 (base 15),
A161953 (base 16).
-
Select[Range[2 * 10^7], # == Total[IntegerDigits[#, 14]^IntegerLength[#, 14]] &] (* Michael De Vlieger, Nov 04 2020 *)
-
select( is_A161951(n)={n==vecsum([d^#n|d<-n=digits(n,14)])}, [1..10^6\3]) \\ M. F. Hasler, Nov 22 2019
A351374
Base-20 Armstrong or narcissistic numbers (written in base 10).
Original entry on oeis.org
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 2413, 53808, 760400, 760401, 45661018, 62470211, 619939142, 14613048357, 1421043363262183, 48470736648305918, 514822672411130775, 360672575087017687943, 264237343348909655564587, 267218514330351511200145
Offset: 1
2413 is in the sequence because 2413 is 60D in base 20 (D stands for 13) and 6^3 + 0^3 + 13^3 = 2413. (The exponent 3 is the number of base-20 digits.)
In other bases:
A010344 (base 4),
A010346 (base 5),
A010348 (base 6),
A010350 (base 7),
A010354 (base 8),
A010353 (base 9),
A005188 (base 10),
A161948 (base 11),
A161949 (base 12),
A161950 (base 13),
A161951 (base 14),
A161952 (base 15),
A161953 (base 16).
-
Select[Range[10^6], # == Total[ IntegerDigits[#, 20]^IntegerLength[#, 20]] &]
-
isok(m) = my(d=digits(m, 20)); sum(k=1, #d, d[k]^#d) == m; \\ Michel Marcus, Mar 19 2022
-
from itertools import islice, combinations_with_replacement
from sympy.ntheory.factor_ import digits
def A351374_gen(): # generator of terms
for k in range(1,157):
a = tuple(i**k for i in range(20))
yield from (x[0] for x in sorted(filter(lambda x:x[0] > 0 and tuple(sorted(digits(x[0],20)[1:])) == x[1], \
((sum(map(lambda y:a[y],b)),b) for b in combinations_with_replacement(range(20),k)))))
A351374_list = list(islice(A351374_gen(),20)) # Chai Wah Wu, Apr 20 2022
Comments