cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A062825 Ch(n-th nonprime) where Ch(n) is Chowla's function, cf. A048050.

Original entry on oeis.org

0, 2, 5, 6, 3, 7, 15, 9, 8, 14, 20, 21, 10, 13, 35, 5, 15, 12, 27, 41, 30, 14, 19, 12, 54, 21, 16, 49, 53, 39, 32, 25, 75, 7, 42, 20, 45, 65, 16, 63, 22, 31, 107, 33, 40, 62, 18, 77, 57, 26, 73, 122, 39, 48, 63, 18, 89, 105, 39, 43, 139, 22, 45, 32, 91, 143, 20, 75, 34, 49, 24, 155, 72, 56, 116, 113, 105, 86, 55, 171, 105, 40, 135
Offset: 1

Views

Author

Jason Earls, Jul 20 2001

Keywords

Comments

a(n) = A048050(A018252(n)).
a(n+1) = sum of nontrivial divisors of n-th composite number, or row sums in table A163870. - Juri-Stepan Gerasimov, Aug 06 2009

Crossrefs

Programs

  • Haskell
    a062825 1 = 0
    a062825 n = sum $ a163870_row (n - 1) -- Reinhard Zumkeller, Mar 29 2014
  • Maple
    with(numtheory): a_list := proc(n); {$1..n} minus select(isprime,{$1..n}); sort(convert(%, list)); map(f->add(d,d=(divisors(f) minus {1,f})),%) end: a_list(113); # Peter Luschny, Mar 29 2014
  • Mathematica
    Reap[Do[If[!PrimeQ[k], Sow[If[k == 1, 0, DivisorSigma[1, k] - k - 1 ]]], {k, 1, 120}]][[2, 1]] (* Jean-François Alcover, Feb 12 2018 *)
  • PARI
    j=[0]; for(n=2,200, if(isprime(n), n+1,j=concat(j, sigma(n)-n-1))); j
    

Extensions

Definition revised and a(1) corrected by Reinhard Zumkeller, Mar 29 2014

A385476 Values of u in the quartets (1, u, v, w) of type 3; i.e., values of u for solutions to (1 - u) = v(v - w), in distinct positive integers, with v > 1, sorted by nondecreasing values of u; see Comments.

Original entry on oeis.org

5, 7, 7, 9, 9, 10, 11, 11, 13, 13, 13, 13, 15, 15, 16, 16, 17, 17, 17, 19, 19, 19, 19, 21, 21, 21, 21, 22, 22, 23, 23, 25, 25, 25, 25, 25, 25, 26, 27, 27, 28, 28, 29, 29, 29, 29, 31, 31, 31, 31, 31, 31, 33, 33, 33, 33, 34, 34, 35, 35, 36, 36, 37, 37, 37, 37
Offset: 1

Views

Author

Clark Kimberling, Aug 16 2025

Keywords

Comments

A 4-tuple (m, u, v, w) is a quartet of type 3 if m, u, v, w are distinct positive integers such that m < v and m*(m - u) = v*(v - w). Here, the values of u are arranged in nondecreasing order. When there is more than one solution for given m and u, the values of v are arranged in increasing order. Here, m = 1.

Examples

			First 20 quartets (1,u,v,w) of type 3:
   m    u    v    w
   1    5    2    4
   1    7    2    5
   1    7    3    5
   1    9    2    6
   1    9    4    6
   1   10    3    6
   1   11    2    7
   1   11    5    7
   1   13    2    8
   1   13    3    7
   1   13    4    7
   1   13    6    8
   1   15    2    9
   1   15    7    9
   1   16    3    5
   1   16    3    8
   1   17    2   10
   1   17    4    8
   1   17    8   10
   1   19    2   11
1(1-11) = 5(5-7), so (1, 11, 5, 7) is in the list.
		

Crossrefs

Cf. A385182 (type 1), A386218 (type 2), A386631, A385246.

Programs

  • Mathematica
    solnsM[m_Integer?Positive, u_Integer?Positive] :=
      Module[{n = m  (m - u), nn, sgn, ds, tups}, If[n == 0, Return[{}]];
       sgn = Sign[n]; nn = Abs[n];
       ds = Divisors[nn];
       If[sgn > 0, ds = Select[ds, # < nn/# &]];
       tups = ({m, u, nn/#, nn/# - sgn  #} & /@ ds);
       Select[tups, #[[3]] > 1 && #[[4]] > 0 && #[[2]] =!= #[[4]](*&&
         Length@DeleteDuplicates[#]==4*)&]];
    (solns =
       Sort[Flatten[Map[solnsM[1, #] &, Range[2, 30]], 1]]) // ColumnForm
    Map[#[[2]] &, solns] (*A385476*)
    Map[#[[3]] &, solns] (*A163870*)
    Map[#[[4]] &, solns] (*A385246*)
    (* Peter J. C. Moses, Aug 22 2025 *)

A233773 Triangle read by rows in which row n lists the proper divisors of n together with -n.

Original entry on oeis.org

-1, 1, -2, 1, -3, 1, 2, -4, 1, -5, 1, 2, 3, -6, 1, -7, 1, 2, 4, -8, 1, 3, -9, 1, 2, 5, -10, 1, -11, 1, 2, 3, 4, 6, -12, 1, -13, 1, 2, 7, -14, 1, 3, 5, -15, 1, 2, 4, 8, -16, 1, -17, 1, 2, 3, 6, 9, -18, 1, -19, 1, 2, 4, 5, 10, -20, 1, 3, 7, -21, 1, 2, 11, -22, 1, -23
Offset: 1

Views

Author

Omar E. Pol, Dec 31 2013

Keywords

Comments

The same as A027750 but with the last term of every row multiplied by -1.
The sum of row n gives the abundance of n.

Examples

			Written as an irregular triangle in which row n has length A000005(n) the sequence begins:
-1;
1, -2;
1, -3;
1, 2, -4;
1, -5;
1, 2, 3, -6;
1, -7;
1, 2, 4, -8;
1, 3, -9;
1, 2, 5, -10;
1, -11;
1, 2, 3, 4, 6, -12;
...
		

Crossrefs

Programs

  • Mathematica
    Flatten[Table[Join[{Most[Divisors[n]]},{-n}],{n,30}]] (* Harvey P. Dale, Feb 20 2016 *)

A328337 The number whose binary indices are the nontrivial divisors of n (greater than 1 and less than n).

Original entry on oeis.org

0, 0, 0, 2, 0, 6, 0, 10, 4, 18, 0, 46, 0, 66, 20, 138, 0, 294, 0, 538, 68, 1026, 0, 2222, 16, 4098, 260, 8266, 0, 16950, 0, 32906, 1028, 65538, 80, 133422, 0, 262146, 4100, 524954, 0, 1056870, 0, 2098186, 16660, 4194306, 0, 8423598, 64, 16777746, 65540
Offset: 1

Views

Author

Gus Wiseman, Oct 15 2019

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.

Examples

			The nontrivial divisors of 18 are {2, 3, 6, 9}, so a(18) = 2^1 + 2^2 + 2^5 + 2^8 = 294.
		

Crossrefs

Removing zeros gives binary indices of rows of A163870.
The version for all divisors is A034729.
The version for proper divisors is A247146.

Programs

  • Mathematica
    Table[Total[(2^DeleteCases[Divisors[n],1|n])/2],{n,100}]
  • Python
    from sympy import divisors
    def A328337(n): return sum(1<<(d-1) for d in divisors(n,generator=True) if 1Chai Wah Wu, Jul 15 2022

Formula

A000120(a(n)) = A070824(n).
A070939(a(n)) = A032742(n).
A001511(a(n)) = A107286(n).

A328459 Sorted positions of first appearances in A328458 (maximum run-length of nontrivial divisors) of each positive integer in the image.

Original entry on oeis.org

1, 2, 6, 12, 60, 420, 504, 840, 2520, 27720, 360360, 720720, 4084080
Offset: 0

Views

Author

Gus Wiseman, Oct 17 2019

Keywords

Examples

			The sequence of terms > 1 together with their nontrivial divisors begins:
    2: {}
    6: {2,3}
   12: {2,3,4,6}
   60: {2,3,4,5,6,10,12,15,20,30}
  420: {2,3,4,5,6,7,10,12,14,15,20,21,28,30,35,42,60,70,84,105,140,210}
  504: {2,3,4,6,7,8,9,12,14,18,21,24,28,36,42,56,63,72,84,126,168,252}
		

Crossrefs

Positions of first appearances in A328458.
The version for all divisors is A051451.

Programs

  • Mathematica
    dav=Table[Switch[n,1,1,_,Max@@Length/@Split[DeleteCases[Divisors[n],1|n],#2==#1+1&]],{n,1000}];
    Table[Position[dav,i][[1,1]],{i,Union[dav]}]//Sort

Extensions

a(12) from Robert Israel, Mar 31 2023
Previous Showing 11-15 of 15 results.