cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A165080 Consider the base-7 Kaprekar map n->K(n) defined in A165071. Sequence gives least elements of each cycle, including fixed points.

Original entry on oeis.org

0, 144, 1068, 9936, 55500, 640992, 3562968, 31412208, 220709400, 227429400, 228238488, 1922263344, 11150046252, 11432420652, 75796404672, 94197649008, 96503566608, 419850417612, 546394287000, 3939440152944, 4615731883344
Offset: 1

Views

Author

Joseph Myers, Sep 04 2009

Keywords

Comments

Initial terms in base 7: 0, 264, 3054, 40653, 320544, 5306532, 42166443, 530666532, 5316666432, 5431055322.

Crossrefs

In other bases: A163205 (base 2), A165002 (base 3), A165021 (base 4), A165041 (base 5), A165060 (base 6), A165099 (base 8), A165119 (base 9), A164718 (base 10).

A165082 Consider the base-7 Kaprekar map n->K(n) defined in A165071. Sequence gives least elements of each cycle of length > 1.

Original entry on oeis.org

144, 1068, 9936, 55500, 640992, 3562968, 31412208, 220709400, 227429400, 228238488, 11150046252, 11432420652, 75796404672, 419850417612, 546394287000, 3939440152944, 26773614188652, 26884299308652
Offset: 1

Views

Author

Joseph Myers, Sep 04 2009

Keywords

Comments

Initial terms in base 7: 264, 3054, 40653, 320544, 5306532, 42166443, 530666532, 5316666432, 5431055322, 5440665222.

Crossrefs

In other bases: Empty (base 2), A165004 (base 3), A165023 (base 4), A165043 (base 5), A165062 (base 6), A165101 (base 8), A165121 (base 9), A164720 (base 10).

A008722 Molien series for 3-dimensional group [2,9] = *229.

Original entry on oeis.org

1, 0, 2, 0, 3, 0, 4, 0, 5, 1, 6, 2, 7, 3, 8, 4, 9, 5, 11, 6, 13, 7, 15, 8, 17, 9, 19, 11, 21, 13, 23, 15, 25, 17, 27, 19, 30, 21, 33, 23, 36, 25, 39, 27, 42, 30, 45, 33, 48, 36, 51, 39, 54, 42, 58, 45, 62, 48, 66, 51, 70, 54, 74, 58, 78, 62, 82, 66, 86, 70, 90, 74, 95, 78, 100, 82
Offset: 0

Views

Author

Keywords

Comments

It appears that a(n) is the number of (n+11)-digit fixed points under the base-7 Kaprekar map A165071 (see A165075 for the list of fixed points). - Joseph Myers, Sep 04 2009
a(n) is the number of partitions of n into parts 2 and 9 where there are two kinds of parts 2. - Hoang Xuan Thanh, Jun 20 2025

Programs

  • GAP
    a:=[1,0,2,0,3,0,4,0,5,1,6,2,7];; for n in [14..80] do a[n]:= 2*a[n-2] -a[n-4]+a[n-9]-2*a[n-11]+a[n-13]; od; a; # G. C. Greubel, Sep 09 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 80); Coefficients(R!( 1/((1-x^2)^2*(1-x^9)) )); // G. C. Greubel, Sep 09 2019
    
  • Maple
    1/((1-x^2)^2*(1-x^9)); seq(coeff(series(%, x, n+1), x, n), n = 0..80); # modified by G. C. Greubel, Sep 09 2019
  • Mathematica
    LinearRecurrence[{0,2,0,-1,0,0,0,0,1,0,-2,0,1}, {1,0,2,0,3,0,4,0,5,1,6, 2,7}, 80] (* Ray Chandler, Jul 15 2015 *)
  • PARI
    my(x='x+O('x^80)); Vec(1/((1-x^2)^2*(1-x^9))) \\ G. C. Greubel, Sep 09 2019
    
  • Sage
    def A008722_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( 1/((1-x^2)^2*(1-x^9)) ).list()
    A008722_list(80) # G. C. Greubel, Sep 09 2019
    

Formula

G.f.: 1/((1-x^2)^2*(1-x^9)).
a(n) = 2*a(n-2) - a(n-4) + a(n-9) - 2*a(n-11) + a(n-13). - R. J. Mathar, Dec 18 2014
a(n) = floor((n^2 + n*(13+9*(-1)^n) + 62*(-1)^n + 75)/72) - [(n mod 9)=7], where [] is Iverson bracket. - Hoang Xuan Thanh, Jun 20 2025

A165086 Consider the base-7 Kaprekar map x->K(x) described in A165071. Sequence gives the smallest number that belongs to a cycle of length n under repeated iteration of this map, or -1 if there is no cycle of length n.

Original entry on oeis.org

0, 144, 1068, 9458722410775248, 9936, 55500, 65945195409025452
Offset: 1

Views

Author

Joseph Myers, Sep 04 2009

Keywords

Comments

Known values (to 100 base-7 digits):
a(1) = 0 (base 10) = 0 (base 7)
a(2) = 144 (base 10) = 264 (base 7)
a(3) = 1068 (base 10) = 3054 (base 7)
a(4) = 9458722410775248 (base 10) = 5544222066654442212 (base 7)
a(5) = 9936 (base 10) = 40653 (base 7)
a(6) = 55500 (base 10) = 320544 (base 7)
a(7) = 65945195409025452 (base 10) = 55332221066554443312 (base 7)
a(9) = 419850417612 (base 10) = 42222166444443 (base 7)
a(10) = 114965566537586468276798389479111631100827277423731225926928273344 (base 10) = 65444444444444444444444443066666666666666666666666532222222222222222222222211 (base 7)
a(11) = 31412208 (base 10) = 530666532 (base 7)
a(12) = 26884299308652 (base 10) = 5443216666443222 (base 7)
a(13) = 894060461610805641013834968 (base 10) = 54444444322106666665544322222222 (base 7)
a(14) = 1591271424672409468790707489057394638817384701224062547077367141620193382944 (base 10) = 65444444444444444444444444444306666666666666666666666666665322222222222222222222222222211 (base 7)
a(17) = 107837050564847832079804652808012 (base 10) = 55444444332221110666655554443322222212 (base 7)
a(24) = 7598644111289477155212 (base 10) = 54443222221066554444432222 (base 7)
a(25) = 18244344524504743400068812 (base 10) = 544432222222106655444444432222 (base 7)

Crossrefs

In other bases: A153881 (base 2), A165008 (base 3), A165028 (base 4), A165047 (base 5), A165067 (base 6), A165106 (base 8), A165126 (base 9), A151959 (base 10).

A319798 Smallest fixed points (>0) of the base-n Kaprekar map.

Original entry on oeis.org

9, 184, 30, 8, 105, 1922263344, 21, 41520, 495, 40, 858, 3488424, 65, 30996, 2040, 96, 2907, 264925230120, 133, 2787400, 5313, 176, 6900, 237360, 225, 9742824, 10962, 280, 13485, 763713003420, 341, 26485184, 19635, 408, 23310, 107599353444576, 481, 60920080, 31980
Offset: 2

Views

Author

Seiichi Manyama, Sep 28 2018

Keywords

Comments

Conjecture: If n = 3*k - 1 (>2), a(n) = A000567(k). For example, a(29) = 10 * (3*10 - 2) = 280.

Crossrefs

Extensions

a(19) and a(31)-a(40) from Giovanni Resta, Oct 02 2018
Previous Showing 11-15 of 15 results.