cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A200212 G.f. satisfies: A(x) = exp( Sum_{n>=1} [Sum_{k=0..n} C(n,k)^3 * x^k*A(x)^(n-k)] * x^n/n ).

Original entry on oeis.org

1, 1, 3, 11, 42, 174, 763, 3457, 16075, 76351, 368767, 1805682, 8943948, 44736096, 225646033, 1146461185, 5862224756, 30144922281, 155791900727, 808773877919, 4215675455503, 22054576750972, 115765182718467, 609508331610920, 3218059655553030, 17034314889643633
Offset: 0

Views

Author

Paul D. Hanna, Nov 14 2011

Keywords

Examples

			G.f.: A(x) = 1 + x + 3*x^2 + 11*x^3 + 42*x^4 + 174*x^5 + 763*x^6 +...
where the logarithm of the g.f. A = A(x) equals the series:
log(A(x)) = (A + x)*x + (A^2 + 2^3*x*A + x^2)*x^2/2 +
(A^3 + 3^3*x*A^2 + 3^3*x^2*A + x^3)*x^3/3 +
(A^4 + 4^3*x*A^3 + 6^3*x^2*A^2 + 4^3*x^3*A + x^4)*x^4/4 +
(A^5 + 5^3*x*A^4 + 10^3*x^2*A^3 + 10^3*x^3*A^2 + 5^3*x^4*A + x^5)*x^5/5 +
(A^6 + 6^3*x*A^5 + 15^3*x^2*A^4 + 20^3*x^3*A^3 + 15^3*x^4*A^2 + 6^3*x^5*A + x^6)*x^6/6 +...
more explicitly,
log(A(x)) = x + 5*x^2/2 + 25*x^3/3 + 117*x^4/4 + 581*x^5/5 + 2987*x^6/6 + 15499*x^7/7 + 81213*x^8/8 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, sum(j=0, m, binomial(m, j)^3*x^j/A^j)*(x*A+x*O(x^n))^m/m))); polcoeff(A, n, x)}

A216356 a(n) = A000172(n^2), where Franel number A000172(n) = Sum_{k=0..n} C(n,k)^3.

Original entry on oeis.org

1, 2, 346, 5280932, 6332299624282, 548057409594239814752, 3282684865686445066146128050420, 1329153351023643434414727317328867397924832, 35862023917618878200052422822926970148356592776600354650, 63875599229358329592315180101212796802405282289343043273094466311541144
Offset: 0

Views

Author

Paul D. Hanna, Sep 04 2012

Keywords

Examples

			L.g.f.: L(x) = 2*x + 346*x^2/2 + 5280932*x^3/3 + 6332299624282*x^4/4 + 548057409594239814752*x^5/5 +...
where exp(L(x)) = 1 + 2*x + 175*x^2 + 1760658*x^3 + 1583078442003*x^4 + 109611485085305859618*x^5 +...+ A216355(n)*x^n +...
		

Crossrefs

Programs

  • PARI
    {a(n)=sum(k=0, n^2, binomial(n^2, k)^3)}
    for(n=0, 15, print1(a(n), ", "))

Formula

Forms the logarithmic derivative of A216355 after ignoring initial term a(0).

A383796 Expansion of g.f.: exp(Sum_{n>=1} A295432(n)*x^n/n).

Original entry on oeis.org

1, 462, 396453, 425295010, 511915968714, 661059663660060, 895093835464198893, 1254056426977089876570, 1802794259810040618367902, 2644298823194748929633091780, 3941742074897786728895080586082, 5954164159064906497558129244865108, 9094122817144126105637193154022530612
Offset: 0

Views

Author

Karol A. Penson, Jun 11 2025

Keywords

Crossrefs

Programs

  • PARI
    seq(n)=Vec(exp(sum(n=1, n, (12*n)!*(3*n)!*(2*n)!*x^n/(n*((6*n)!)^2*(4*n)!*n!), O(x*x^n)))) \\ Andrew Howroyd, Jun 11 2025

Formula

G.f.: exp(Sum_{n>=1} (12*n)!*(3*n)!*(2*n)!*x^n/(n*((6*n)!)^2*(4*n)!*n!)).

A200215 G.f. satisfies: A(x) = exp( Sum_{n>=1} (Sum_{k=0..n} C(n,k)^3 * x^k*A(x)^k) * x^n*A(x)^n/n ).

Original entry on oeis.org

1, 1, 3, 13, 61, 306, 1623, 8937, 50565, 292283, 1718827, 10250916, 61854848, 376949934, 2316738789, 14343701657, 89379109846, 560108223900, 3527723269978, 22318890516413, 141778326349191, 903936594232782, 5782447430948438, 37102633354583532, 238729798670985104
Offset: 0

Views

Author

Paul D. Hanna, Nov 14 2011

Keywords

Examples

			G.f.: A(x) = 1 + x + 3*x^2 + 13*x^3 + 61*x^4 + 306*x^5 + 1623*x^6 +...
where the logarithm of the g.f. A = A(x) equals the series:
log(A(x)) = (1 + x*A)*x*A + (1 + 2^3*x*A + x^2*A^2)*x^2*A^2/2 +
(1 + 3^3*x*A + 3^3*x^2*A^2 + x^3*A^3)*x^3*A^3/3 +
(1 + 4^3*x*A + 6^3*x^2*A^2 + 4^3*x^3*A^3 + x^4*A^4)*x^4*A^4/4 +
(1 + 5^3*x*A + 10^3*x^2*A^2 + 10^3*x^3*A^3 + 5^3*x^4*A^4 + x^5*A^5)*x^5*A^5/5 +
(1 + 6^3*x*A + 15^3*x^2*A^2 + 20^3*x^3*A^3 + 15^3*x^4*A^4 + 6^3*x^5*A^5 + x^6*A^6)*x^6*A^6/6 +...
more explicitly,
log(A(x)) = x + 5*x^2/2 + 31*x^3/3 + 185*x^4/4 + 1126*x^5/5 + 7043*x^6/6 + 44689*x^7/7 + 286241*x^8/8 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, sum(j=0, m, binomial(m, j)^3*x^j*A^j)*(x*A+x*O(x^n))^m/m))); polcoeff(A, n, x)}

A362731 a(n) = [x^n] E(x)^n where E(x) = exp( Sum_{k >= 1} A000172(k)*x^k/k ).

Original entry on oeis.org

1, 2, 18, 182, 1954, 21702, 246366, 2839846, 33105186, 389264798, 4608481918, 54862022910, 656099844526, 7876525155020, 94867757934870, 1145843922848232, 13873839714404642, 168345900709550388, 2046612356962697502, 24923311881995950740, 303974276349311203854
Offset: 0

Views

Author

Peter Bala, May 05 2023

Keywords

Comments

It is known that the sequence of Franel numbers A000172 satisfies the Gauss congruences A000172(n*p^r) == A000172(n*p^(r-1)) (mod p^r) for all primes p and positive integers n and r.
One consequence is that the power series expansion of E(x) = exp( Sum_{k >= 1} A000172(k)*x^k/k ) = 1 + 2*x + 7*x^2 + 30*x^3 + 147*x^4 + ... (the g.f. of A166990) has integer coefficients (see, for example, Beukers, Proposition, p. 143). Therefore a(n) = [x^n] E(x)^n is an integer.
In fact, the Franel numbers satisfy stronger congruences than the Gauss congruences known as supercongruences: A000172(n*p^r) == A000172(n*p^(r-1)) (mod p^(3*r)) for all primes p >= 5 and positive integers n and r.

Crossrefs

Programs

  • Maple
    A000172 := proc(n) add(binomial(n,k)^3, k = 0..n); end:
    E(n,x) := series( exp(n*add(A000172(k)*x^k/k, k = 1..20)), x, 21 ):
    seq(coeftayl(E(n,x), x = 0, n), n = 0..20);

Formula

The Gauss congruence a(n*p^r) == a(n*p^(r-1)) (mod p^r) holds for all primes p and positive integers n and r.
Conjecture: the supercongruence a(n*p^r) == a(n*p^(r-1)) (mod p^(2*r)) holds for
all primes p and positive integers n and r.

A384957 Expansion of g.f.: exp(Sum_{n>=1} A295433(n)*x^n/n).

Original entry on oeis.org

1, 990, 2206149, 6450139410, 21553605027306, 77957908218716988, 297118041166459732781, 1175248212459867447863562, 4779368947089383238327733950, 19858241947988743766121587718308, 83936671517628352407663509802203682, 359778601391313651280693986124971038388, 1560159110515342136997114532804454280500084
Offset: 0

Views

Author

Karol A. Penson, Jun 13 2025

Keywords

Crossrefs

Programs

  • PARI
    seq(n)=Vec(exp(sum(n=1, n, (12*n)!*n!*x^n/((8*n)!*(3*n)!*(2*n)!)/n, O(x*x^n)) )) \\ Andrew Howroyd, Jun 13 2025

Formula

G.f.: exp(Sum_{n>=1} (12*n)!*n!*x^n/((8*n)!*(3*n)!*(2*n)!)/n).
Previous Showing 11-16 of 16 results.