A163207
Number of reduced words of length n in Coxeter group on 29 generators S_i with relations (S_i)^2 = (S_i S_j)^4 = I.
Original entry on oeis.org
1, 29, 812, 22736, 636202, 17802288, 498146166, 13939191504, 390048294510, 10914382803996, 305407698579522, 8545958486918244, 239134137088822794, 6691482951706744632, 187241958166564053774, 5239429159586654676168
Offset: 0
-
a:=[29,812,22736,636202];; for n in [5..20] do a[n]:=27*(a[n-1] +a[n-2]+a[n-3] -14*a[n-4]); od; Concatenation([1], a); # G. C. Greubel, Apr 28 2019
-
R:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+x)*(1-x^4)/(1-28*x+405*x^4-378*x^5) )); // G. C. Greubel, Apr 28 2019
-
CoefficientList[Series[(t^4+2*t^3+2*t^2+2*t+1)/(378*t^4-27*t^3-27*t^2 - 27*t+1), {t,0,20}], t] (* or *) LinearRecurrence[{27,27,27,-378}, {1,29, 812,22736,636202}, 20] (* G. C. Greubel, Dec 10 2016 *)
coxG[{4, 378, -27}] (* The coxG program is at A169452 *) (* G. C. Greubel, Apr 28 2019 *)
-
my(x='x+O('x^20)); Vec((1+x)*(1-x^4)/(1-28*x+405*x^4-378*x^5)) \\ G. C. Greubel, Dec 10 2016, modified Apr 28 2019
-
((1+x)*(1-x^4)/(1-28*x+405*x^4-378*x^5)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Apr 28 2019
A163208
Number of reduced words of length n in Coxeter group on 30 generators S_i with relations (S_i)^2 = (S_i S_j)^4 = I.
Original entry on oeis.org
1, 30, 870, 25230, 731235, 21193200, 614237400, 17802288000, 515959239390, 14953916974920, 433405617680280, 12561286100120520, 364060598322527820, 10551476830837383840, 305810801346502707360, 8863237603561904401440
Offset: 0
-
a:=[30,870,25230,731235];; for n in [5..20] do a[n]:=28*(a[n-1] + a[n-2]+a[n-3]) -406*a[n-4]; od; Concatenation([1], a); # G. C. Greubel, Apr 28 2019
-
R:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+x)*(1-x^4)/(1-29*x+434*x^4-406*x^5) )); // G. C. Greubel, Apr 28 2019
-
CoefficientList[Series[(t^4+2*t^3+2*t^2+2*t+1)/(406*t^4-28*t^3-28*t^2- 28*t+1), {t,0,20}], t] (* or *) LinearRecurrence[{28,28,28,-406}, {1,30, 870,25230,731235}, 20] (* G. C. Greubel, Dec 10 2016 *)
coxG[{4, 406, -28}] (* The coxG program is at A169452 *) (* G. C. Greubel, Apr 28 2019 *)
-
my(x='x+O('x^20)); Vec((1+x)*(1-x^4)/(1-29*x+434*x^4-406*x^5)) \\ G. C. Greubel, Dec 10 2016, modified Apr 28 2019
-
((1+x)*(1-x^4)/(1-29*x+434*x^4-406*x^5)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Apr 28 2019
A163214
Number of reduced words of length n in Coxeter group on 31 generators S_i with relations (S_i)^2 = (S_i S_j)^4 = I.
Original entry on oeis.org
1, 31, 930, 27900, 836535, 25082100, 752044965, 22548807900, 676088221260, 20271372436125, 607803134933490, 18223958540698875, 546414860017738110, 16383333982098029400, 491226816855341457015, 14728612983261055500600
Offset: 0
-
a:=[31,930,27900,836535];; for n in [5..20] do a[n]:=29*(a[n-1]+ a[n-2] +a[n-3] -15*a[n-4]); od; Concatenation([1], a); # G. C. Greubel, Apr 28 2019
-
R:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+x)*(1-x^4)/(1-30*x+464*x^4-435*x^5) )); // G. C. Greubel, Apr 28 2019
-
coxG[{4,435,-29}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Apr 24 2016 *)
CoefficientList[Series[(t^4+2*t^3+2*t^2+2*t+1)/(435*t^4-29*t^3-29*t^2 - 29*t+1), {t,0,20}], t] (* or *) LinearRecurrence[{29,29,29,-435}, {1,31, 930,27900,836535}, 20] (* G. C. Greubel, Dec 10 2016 *)
-
my(x='x+O('x^20)); Vec((1+x)*(1-x^4)/(1-30*x+464*x^4-435*x^5)) \\ G. C. Greubel, Dec 10 2016, modified Apr 28 2019
-
((1+x)*(1-x^4)/(1-30*x+464*x^4-435*x^5)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Apr 28 2019
A163216
Number of reduced words of length n in Coxeter group on 33 generators S_i with relations (S_i)^2 = (S_i S_j)^4 = I.
Original entry on oeis.org
1, 33, 1056, 33792, 1080816, 34569216, 1105674768, 35364307968, 1131105025776, 36177678932736, 1157120181575952, 37009757234816256, 1183733679862288368, 37860973146888460800, 1210959282493490855952, 38731766829339020895744
Offset: 0
-
a:=[33,1056,33792,1080816];; for n in [5..20] do a[n]:=31*(a[n-1]+ a[n-2]+a[n-3]-16*a[n-4]); od; Concatenation([1], a); # G. C. Greubel, Apr 28 2019
-
R:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+x)*(1-x^4)/(1-32*x+527*x^4-496*x^5) )); // G. C. Greubel, Apr 28 2019
-
CoefficientList[Series[(t^4+2*t^3+2*t^2+2*t+1)/(496*t^4-31*t^3-31*t^2 - 31*t+1), {t,0,20}], t] (* or *) LinearRecurrence[{31,31,31,-496}, {1,33, 1056,33792,1080816}, 20] (* G. C. Greubel, Dec 11 2016 *)
coxG[{4, 496, -31}] (* The coxG program is at A169452 *) (* G. C. Greubel, Apr 28 2019 *)
-
my(x='x+O('x^20)); Vec((1+x)*(1-x^4)/(1-32*x+527*x^4-496*x^5)) \\ G. C. Greubel, Dec 11 2016, modified Apr 28 2019
-
((1+x)*(1-x^4)/(1-32*x+527*x^4-496*x^5)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Apr 28 2019
A163217
Number of reduced words of length n in Coxeter group on 34 generators S_i with relations (S_i)^2 = (S_i S_j)^4 = I.
Original entry on oeis.org
1, 34, 1122, 37026, 1221297, 40284288, 1328771136, 43829305344, 1445702699760, 47686274735616, 1572924224543232, 51882656590093824, 1711341215834452224, 56448319139710451712, 1861938872397761101824, 61415759005426222645248
Offset: 0
-
a:=[34,1122,37026,1221297];; for n in [5..20] do a[n]:=32*(a[n-1]+ a[n-2]+a[n-3]) -528*a[n-4]; od; Concatenation([1], a); # G. C. Greubel, Apr 28 2019
-
R:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+x)*(1-x^4)/(1-33*x+560*x^4-528*x^5) )); // G. C. Greubel, Apr 28 2019
-
CoefficientList[Series[(t^4+2*t^3+2*t^2+2*t+1)/(528*t^4-32*t^3-32*t^2 - 32*t+1), {t,0,20}], t] (* or *)
LinearRecurrence[{32, 32, 32, -528}, {1, 34, 1122, 37026, 1221297}, 20] (* G. C. Greubel, Dec 11 2016; simplified by Georg Fischer, Apr 08 2019 *)
coxG[{4,528,-32}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Jul 06 2018 *)
-
my(x='x+O('x^20)); Vec((1+x)*(1-x^4)/(1-33*x+560*x^4-528*x^5)) \\ G. C. Greubel, Dec 11 2016, modified Apr 28 2019
-
((1+x)*(1-x^4)/(1-33*x+560*x^4-528*x^5)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Apr 28 2019
A163218
Number of reduced words of length n in Coxeter group on 35 generators S_i with relations (S_i)^2 = (S_i S_j)^4 = I.
Original entry on oeis.org
1, 35, 1190, 40460, 1375045, 46731300, 1588176975, 53974651500, 1834344072330, 62340711467265, 2118667029023160, 72003509011079415, 2447059985777227590, 83164038200838759780, 2826353783752411211145, 96054447135432681999180
Offset: 0
-
R:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+x)*(1-x^4)/(1-34*x+594*x^4-x^561*x^5) )); // G. C. Greubel, Apr 30 2019
-
CoefficientList[Series[(t^4+2*t^3+2*t^2+2*t+1)/(561*t^4-33*t^3-33*t^2 - 33*t+1), {t,0,20}], t] (* or *) LinearRecurrence[{33, 33, 33, -561}, {1, 35, 1190, 40460}, 20] (* G. C. Greubel, Dec 11 2016 *)
coxG[{4, 561, -33}] (* The coxG program is at A169452 *) (* G. C. Greubel, Apr 30 2019 *)
-
my(t='t+O('t^20)); Vec((t^4+2*t^3+2*t^2+2*t+1)/(561*t^4-33*t^3 - 33*t^2-33*t+1)) \\ G. C. Greubel, Dec 11 2016
-
((1+x)*(1-x^4)/(1-34*x+594*x^4-561*x^5)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Apr 30 2019
A163219
Number of reduced words of length n in Coxeter group on 36 generators S_i with relations (S_i)^2 = (S_i S_j)^4 = I.
Original entry on oeis.org
1, 36, 1260, 44100, 1542870, 53978400, 1888472880, 66069561600, 2311490430270, 80869130653500, 2829263840578980, 98983800307381500, 3463018394666864670, 121156152466965222600, 4238733846520797445080, 148295107229819712107400
Offset: 0
-
R:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+x)*(1-x^4)/(1-35*x+629*x^4-595*x^5) )); // G. C. Greubel, Apr 30 2019
-
CoefficientList[Series[(t^4+2*t^3+2*t^2+2*t+1)/(595*t^4-34*t^3-34*t^2 - 34*t+1), {t, 0, 20}], t] (* or *) Join[{1}, LinearRecurrence[{34, 34, 34, -595}, {36, 1260, 44100, 1542870}, 20]] (* G. C. Greubel, Dec 11 2016 *)
coxG[{4, 595, -34}] (* The coxG program is at A169452 *) (* G. C. Greubel, Apr 30 2019 *)
-
my(t='t+O('t^20)); Vec((t^4+2*t^3+2*t^2+2*t+1)/(595*t^4-34*t^3 - 34*t^2-34*t+1)) \\ G. C. Greubel, Dec 11 2016
-
((1+x)*(1-x^4)/(1-35*x+629*x^4-595*x^5)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Apr 30 2019
A163220
Number of reduced words of length n in Coxeter group on 37 generators S_i with relations (S_i)^2 = (S_i S_j)^4 = I.
Original entry on oeis.org
1, 37, 1332, 47952, 1725606, 62097840, 2234659770, 80416702800, 2893883982570, 104139615440700, 3747579228757350, 134860782963557700, 4853114416362432150, 174644689291688511000, 6284782282271390399250
Offset: 0
-
R:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+x)*(1-x^4)/(1-36*x+665*x^4-630*x^5) )); // G. C. Greubel, Apr 30 2019
-
CoefficientList[Series[(t^4+2*t^3+2*t^2+2*t+1)/(630*t^4-35*t^3-35*t^2 - 35*t+1), {t,0,20}], t] (* or *) LinearRecurrence[{35, 35, 35, -630}, {1, 37, 1332, 47952}, 20] (* G. C. Greubel, Dec 11 2016 *)
coxG[{4, 630, -35}] (* The coxG program is at A169452 *) (* G. C. Greubel, Apr 30 2019 *)
-
my(t='t+O('t^20)); Vec((t^4+2*t^3+2*t^2+2*t+1)/(630*t^4-35*t^3 - 35*t^2-35*t+1)) \\ G. C. Greubel, Dec 11 2016
-
((1+x)*(1-x^4)/(1-36*x+665*x^4-630*x^5)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Apr 30 2019
A163221
Number of reduced words of length n in Coxeter group on 38 generators S_i with relations (S_i)^2 = (S_i S_j)^4 = I.
Original entry on oeis.org
1, 38, 1406, 52022, 1924111, 71166096, 2632183848, 97355219328, 3600827035866, 133181923185576, 4925930761424952, 182192847843197736, 6738672428195210748, 249239784283952410080, 9218502714272560450272
Offset: 0
-
a:=[38,1406,52022,1924111];; for n in [5..20] do a[n]:=36*(a[n-1]+ a[n-2]+a[n-3]) -666*a[n-4]; od; Concatenation([1], a); # G. C. Greubel, May 01 2019
-
R:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+x)*(1-x^4)/(1-37*x+702*x^4-666*x^5) )); // G. C. Greubel, May 01 2019
-
coxG[{4,666,-36}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Jul 09 2015 *)
CoefficientList[Series[(t^4+2*t^3+2*t^2+2*t+1)/(666*t^4-36*t^3-36*t^2 - 36*t+1), {t,0,20}], t] (* or *) LinearRecurrence[{36, 36, 36, -666}, {1, 38, 1406, 52022, 1924111}, 20] (* G. C. Greubel, Dec 11 2016; modified by Georg Fischer, Apr 08 2019 *)
-
my(t='t+O('t^20)); Vec((t^4+2*t^3+2*t^2+2*t+1)/(666*t^4-36*t^3 - 36*t^2-36*t+1)) \\ G. C. Greubel, Dec 11 2016
-
((1+x)*(1-x^4)/(1-37*x+702*x^4-666*x^5)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, May 01 2019
A163222
Number of reduced words of length n in Coxeter group on 39 generators S_i with relations (S_i)^2 = (S_i S_j)^4 = I.
Original entry on oeis.org
1, 39, 1482, 56316, 2139267, 81263988, 3086962281, 117263934684, 4454486050560, 169211838474861, 6427822638540342, 244172655087350379, 9275347010187982854, 352341101130365494992, 13384324210123816783899
Offset: 0
-
R:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+x)*(1-x^4)/(1-38*x+740*x^4-703*x^5) )); // G. C. Greubel, Apr 30 2019
-
CoefficientList[Series[(t^4+2*t^3+2*t^2+2*t+1)/(703*t^4-37*t^3-37*t^2 - 37*t+1), {t,0,20}], t] (* or *) Join[{1}, LinearRecurrence[{37, 37, 37, -703}, {39, 1482, 56316, 2139267}, 20]] (* G. C. Greubel, Dec 11 2016 *)
coxG[{4, 703, -37}] (* The coxG program is at A169452 *) (* G. C. Greubel, Apr 30 2019 *)
-
my(t='t+O('t^20)); Vec((t^4+2*t^3+2*t^2+2*t+1)/(703*t^4-37*t^3 - 37*t^2-37*t+1)) \\ G. c. Greubel, Dec 11 2016
-
((1+x)*(1-x^4)/(1-38*x+740*x^4-703*x^5)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Apr 30 2019
Comments