A163223
Number of reduced words of length n in Coxeter group on 40 generators S_i with relations (S_i)^2 = (S_i S_j)^4 = I.
Original entry on oeis.org
1, 40, 1560, 60840, 2371980, 92476800, 3605409600, 140564736000, 5480222014020, 213658376756760, 8329936604744040, 324760699264187160, 12661502336823753660, 493636212105145265520, 19245481572342746507280
Offset: 0
-
R:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+x)*(1-x^4)/(1-39*x+779*x^4-741*x^5) )); // G. C. Greubel, Apr 30 2019
-
CoefficientList[Series[(t^4+2*t^3+2*t^2+2*t+1)/(741*t^4-38*t^3-38*t^2 - 38*t+1), {t, 0, 20}], t] (* or *) LinearRecurrence[{38, 38, 38, -741}, {1, 40, 1560, 60840, 2371980}, 20] (* G. C. Greubel, Dec 11 2016 *)
coxG[{4, 741, -38}] (* The coxG program is at A169452 *) (* G. C. Greubel, Apr 30 2019 *)
-
my(t='t+O('t^20)); Vec((t^4+2*t^3+2*t^2+2*t+1)/(741*t^4- 38*t^3 -38*t^2-38*t+1)) \\ G. C. Greubel, Dec 11 2016
-
((1+x)*(1-x^4)/(1-39*x+779*x^4-741*x^5)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Apr 30 2019
A163224
Number of reduced words of length n in Coxeter group on 41 generators S_i with relations (S_i)^2 = (S_i S_j)^4 = I.
Original entry on oeis.org
1, 41, 1640, 65600, 2623180, 104894400, 4194464820, 167726145600, 6706948607580, 268194081870000, 10724409825744420, 428842296999090000, 17148329715447559980, 685718769084764781600, 27420176663127165184020
Offset: 0
-
R:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+x)*(1-x^4)/(1-40*x+819*x^4-780*x^5) )); // G. C. Greubel, Apr 30 2019
-
CoefficientList[Series[(t^4+2*t^3+2*t^2+2*t+1)/(780*t^4-39*t^3-39*t^2 - 39*t+1), {t,0,20}], t] (* or *) Join[{1}, LinearRecurrence[ {39, 39, 39, -780}, {41,1640,65600,2623180} 20]] (* G. C. Greubel, Dec 11 2016 *)
coxG[{4,780,-39}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Jan 18 2019 *)
-
my(t='t+O('t^20)); Vec((t^4+2*t^3+2*t^2+2*t+1)/(780*t^4-39*t^3- 39*t^2-39*t+1)) \\ G. C. Greubel, Dec 11 2016
-
((1+x)*(1-x^4)/(1-40*x+819*x^4-780*x^5)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Apr 30 2019
A163226
Number of reduced words of length n in Coxeter group on 43 generators S_i with relations (S_i)^2 = (S_i S_j)^4 = I.
Original entry on oeis.org
1, 43, 1806, 75852, 3184881, 133727076, 5614945203, 235760834988, 9899147615406, 415646320207041, 17452195907135052, 732784406294332791, 30768219023291805678, 1291898809163525952060, 54244365975641552431917
Offset: 0
-
R:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+x)*(1-x^4)/(1-42*x+902*x^4-861*x^5) )); // G. C. Greubel, Apr 30 2019
-
CoefficientList[Series[(t^4+2*t^3+2*t^2+2*t+1)/(861*t^4-41*t^3-41*t^2 - 41*t+1), {t,0,20}], t] (* or *) Join[{1}, LinearRecurrence[ {41, 41, 41, -861}, {43,1806,75852,3184881}, 20]] (* G. C. Greubel, Dec 11 2016 *)
coxG[{4, *61, -41}] (* The coxG program is at A169452 *) (* G. C. Greubel, Apr 30 2019 *)
-
my(t='t+O('t^20)); Vec((t^4+2*t^3+2*t^2+2*t+1)/(861*t^4-41*t^3 - 41*t^2-41*t+1)) \\ G. C. Greubel, Dec 11 2016
-
((1+x)*(1-x^4)/(1-42*x+902*x^4-861*x^5)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Apr 30 2019
A163230
Number of reduced words of length n in Coxeter group on 44 generators S_i with relations (S_i)^2 = (S_i S_j)^4 = I.
Original entry on oeis.org
1, 44, 1892, 81356, 3497362, 150345888, 6463124976, 277839201024, 11943854101410, 513446807614356, 22072240836651852, 948849634132915284, 40789498214388049434, 1753474001285744132472, 75378987430163637459624
Offset: 0
-
R:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+x)*(1-x^4)/(1-43*x+945*x^4-903*x^5) )); // G. C. Greubel, Apr 30 2019
-
coxG[{4,903,-42}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Apr 18 2015 *)
CoefficientList[Series[(t^4+2*t^3+2*t^2+2*t+1)/(903*t^4-42*t^3-42*t^2 - 42*t+1), {t,0,20}], t] (* or *) Join[{1}, LinearRecurrence[ {42, 42, 42, -903}, {44,1892,81356,3497362}, 50]] (* G. C. Greubel, Dec 11 2016 *)
-
my(t='t+O('t^20)); Vec((t^4+2*t^3+2*t^2+2*t+1)/(903*t^4-42*t^3 - 42*t^2-42*t+1)) \\ G. C. Greubel, Dec 11 2016
-
((1+x)*(1-x^4)/(1-43*x+945*x^4-903*x^5)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Apr 30 2019
A163231
Number of reduced words of length n in Coxeter group on 45 generators S_i with relations (S_i)^2 = (S_i S_j)^4 = I.
Original entry on oeis.org
1, 45, 1980, 87120, 3832290, 168577200, 7415481150, 326196882000, 14348955088710, 631190926398780, 27765226324720170, 1221354364616557380, 53725709508796162530, 2363320544672336677560, 103959241263364038810390
Offset: 0
-
R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1+x)*(1-x^4)/(1-44*x+989*x^4-946*x^5) )); // G. C. Greubel, Apr 30 2019
-
CoefficientList[Series[(t^4+2*t^3+2*t^2+2*t+1)/(946*t^4-43*t^3-43*t^2 - 43*t+1), {t,0,20}], t] (* or *) Join[{1}, LinearRecurrence[ {43, 43, 43, -946}, {45,1980,87120,3832290}, 20]] (* G. C. Greubel, Dec 11 2016 *)
coxG[{4, 946, -43}] (* The coxG program is at A169452 *) (* G. C. Greubel, Apr 30 2019 *)
-
my(t='t+O('t^20)); Vec((t^4+2*t^3+2*t^2+2*t+1)/(946*t^4-43*t^3 - 43*t^2-43*t+1)) \\ G. C. Greubel, Dec 11 2016
-
((1+x)*(1-x^4)/(1-44*x+989*x^4-946*x^5)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Apr 30 2019
A163232
Number of reduced words of length n in Coxeter group on 46 generators S_i with relations (S_i)^2 = (S_i S_j)^4 = I.
Original entry on oeis.org
1, 46, 2070, 93150, 4190715, 188535600, 8482007160, 381596054400, 17167581467190, 772350369021000, 34747182860785560, 1563237055602189000, 70328294002955286540, 3163991615757072698400, 142344458748855549948960
Offset: 0
-
a:=[46,2070,93150,4190715];; for n in [5..20] do a[n]:=44*(a[n-1] +a[n-2] +a[n-3]) -990*a[n-4]; od; Concatenation([1], a); # G. C. Greubel, May 01 2019
-
R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1+x)*(1-x^4)/(1-45*x+1034*x^4-990*x^5) )); // G. C. Greubel, May 01 2019
-
CoefficientList[Series[(t^4+2*t^3+2*t^2+2*t+1)/(990*t^4-44*t^3-44*t^2 - 44*t+1), {t,0,20}], t] (* or *) Join[{1}, LinearRecurrence[ {44, 44, 44, -990}, {46,2070,93150,4190715}, 20]] (* G. C. Greubel, Dec 11 2016 *)
coxG[{4, 990, -44}] (* The coxG program is at A169452 *) (* G. C. Greubel, May 01 2019 *)
-
my(t='t+O('t^20)); Vec((t^4+2*t^3+2*t^2+2*t+1)/(990*t^4-44*t^3 - 44*t^2-44*t+1)) \\ G. C. Greubel, Dec 11 2016
-
((1+x)*(1-x^4)/(1-45*x+1034*x^4-990*x^5)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, May 01 2019
A163265
Number of reduced words of length n in Coxeter group on 47 generators S_i with relations (S_i)^2 = (S_i S_j)^4 = I.
Original entry on oeis.org
1, 47, 2162, 99452, 4573711, 210340980, 9673398765, 444871172700, 20459237269140, 940902479912925, 43271284508242650, 1990008638480367675, 91518761835509986350, 4208868045065726973000, 193562170919821248573375
Offset: 0
-
a:=[47,2162,99452,4573711];; for n in [5..20] do a[n]:=45*(a[n-1]+a[n-2] +a[n-3]-23*a[n-4]); od; Concatenation([1], a); # G. C. Greubel, May 01 2019
-
R:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+x)*(1-x^4)/(1-46*x+1080*x^4-1035*x^5) )); // G. C. Greubel, May 01 2019
-
CoefficientList[Series[(t^4+2*t^3+2*t^2+2*t+1)/(1035*t^4-45*t^3-45*t^2 - 45*t+1), {t,0,20}], t] (* or *) LinearRecurrence[ {45, 45, 45, -1035}, {1,47,2162,99452,4573711}, 20] (* G. C. Greubel, Dec 12 2016 *)
coxG[{4, 1035, -45}] (* The coxG program is at A169452 *) (* G. C. Greubel, May 01 2019 *)
-
my(t='t+O('t^20)); Vec((t^4+2*t^3+2*t^2+2*t+1)/(1035*t^4-45*t^3- 45*t^2-45*t+1)) \\ G. C. Greubel, Dec 12 2016
-
((1+x)*(1-x^4)/(1-46*x+1080*x^4-1035*x^5)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, May 01 2019
A163266
Number of reduced words of length n in Coxeter group on 48 generators S_i with relations (S_i)^2 = (S_i S_j)^4 = I.
Original entry on oeis.org
1, 48, 2256, 106032, 4982376, 234118656, 11001086208, 516933992448, 24290397127896, 1141390199234256, 53633194222120752, 2520189436004377296, 118422087020288430408, 5564578001118314478240, 261475955285477822620512, 12286587622406034842484384, 577338880885792093267553208
Offset: 0
-
a:=[48,2256,106032,4982376];; for n in [5..20] do a[n]:=46*(a[n-1] +a[n-2] +a[n-3]) -1081*a[n-4]; od; Concatenation([1], a); # G. C. Greubel, May 01 2019
-
R:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+x)*(1-x^4)/(1-47*x+1127*x^4-1081*x^5) )); // G. C. Greubel, May 01 2019
-
CoefficientList[Series[(t^4+2*t^3+2*t^2+2*t+1)/(1081*t^4-46*t^3-46*t^2 - 46*t+1), {t,0,20}], t] (* or *) LinearRecurrence[ {46,46,46,-1081}, {1,48,2256,106032,4982376}, 20] (* G. C. Greubel, Dec 12 2016 *)
coxG[{4, 1081, -46}] (* The coxG program is at A169452 *) (* G. C. Greubel, May 01 2019 *)
-
my(t='t+O('t^20)); Vec((t^4+2*t^3+2*t^2+2*t+1)/(1081*t^4-46*t^3 - 46*t^2-46*t+1)) \\ G. C. Greubel, Dec 12 2016
-
((1+x)*(1-x^4)/(1-47*x+1127*x^4-1081*x^5)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, May 01 2019
A163287
Number of reduced words of length n in Coxeter group on 49 generators S_i with relations (S_i)^2 = (S_i S_j)^4 = I.
Original entry on oeis.org
1, 49, 2352, 112896, 5417832, 259999488, 12477267096, 598778820864, 28735144795560, 1378987562102976, 66177035471527512, 3175808211876089664, 152405705797427455464, 7313885981134376257152, 350990324575741067673624
Offset: 0
-
a:=[49,2352,112896,5417832];; for n in [5..20] do a[n]:=47*(a[n-1]+a[n-2] +a[n-3] -24*a[n-4]); od; Concatenation([1], a); # G. C. Greubel, May 01 2019
-
R:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+x)*(1-x^4)/(1-48*x+1175*x^4-1128*x^5) )); // G. C. Greubel, May 01 2019
-
CoefficientList[Series[(t^4+2*t^3+2*t^2+2*t+1)/(1128*t^4-47*t^3-47*t^2 - 47*t+1), {t,0,20}], t] (* or *) LinearRecurrence[{47, 47, 47, -1128}, {1,49,2352,112896,5417832}, 20] (* G. C. Greubel, Dec 17 2016 *)
coxG[{4, 1128, -47}] (* The coxG program is at A169452 *) (* G. C. Greubel, May 01 2019 *)
-
my(t='t+O('t^20)); Vec((t^4+2*t^3+2*t^2+2*t+1)/(1128*t^4-47*t^3 - 47*t^2-47*t+1)) \\ G. C. Greubel, Dec 17 2016
-
((1+x)*(1-x^4)/(1-48*x+1175*x^4-1128*x^5)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, May 01 2019
A163315
Number of reduced words of length n in Coxeter group on 4 generators S_i with relations (S_i)^2 = (S_i S_j)^5 = I.
Original entry on oeis.org
1, 4, 12, 36, 108, 318, 936, 2760, 8136, 23976, 70662, 208260, 613788, 1808964, 5331420, 15712878, 46309320, 136483800, 402247944, 1185513624, 3493970742, 10297504260, 30349021740, 89445276900, 263615006412, 776931706398
Offset: 0
-
R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1+x)*(1-x^5)/(1-3*x+5*x^5-3*x^6) )); // G. C. Greubel, May 12 2019
-
CoefficientList[Series[(1+x)*(1-x^5)/(1-3*x+5*x^5-3*x^6), {x,0,30}], x] (* or *) Join[{1}, LinearRecurrence[{2,2,2,2,-3}, {1,4,12,36,108,318}, 30]] (* G. C. Greubel, Dec 18 2016 *)
coxG[{4, 3, -2}] (* The coxG program is at A169452 *) (* G. C. Greubel, May 12 2019 *)
-
my(x='x+O('x^30)); Vec((1+x)*(1-x^5)/(1-3*x+5*x^5-3*x^6)) \\ G. C. Greubel, Dec 18 2016
-
((1+x)*(1-x^5)/(1-3*x+5*x^5-3*x^6)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, May 12 2019
Comments