A163316
Number of reduced words of length n in Coxeter group on 5 generators S_i with relations (S_i)^2 = (S_i S_j)^5 = I.
Original entry on oeis.org
1, 5, 20, 80, 320, 1270, 5040, 20010, 79440, 315360, 1251930, 4969980, 19730070, 78325380, 310939920, 1234384470, 4900319640, 19453527810, 77227563240, 306581745960, 1217083163130, 4831636082580, 19180864497870, 76145131089180
Offset: 0
-
R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1+x)*(1-x^5)/(1-4*x+9*x^5-6*x^6) )); // G. C. Greubel, May 12 2019
-
CoefficientList[Series[(1+x)*(1-x^5)/(1-4*x+9*x^5-6*x^6), {x, 0, 30}], x] (* or *) LinearRecurrence[{3,3,3,3,-6}, {1,5,20,80,320,1270}, 30] (* G. C. Greubel, Dec 18 2016 *)
coxG[{5, 6, -3}] (* The coxG program is at A169452 *) (* G. C. Greubel, May 12 2019 *)
-
my(x='x+O('x^30)); Vec((1+x)*(1-x^5)/(1-4*x+9*x^5-6*x^6)) \\ G. C. Greubel, Dec 18 2016
-
((1+x)*(1-x^5)/(1-4*x+9*x^5-6*x^6)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, May 12 2019
A163317
Number of reduced words of length n in Coxeter group on 6 generators S_i with relations (S_i)^2 = (S_i S_j)^5 = I.
Original entry on oeis.org
1, 6, 30, 150, 750, 3735, 18600, 92640, 461400, 2298000, 11445210, 57003000, 283904040, 1413987000, 7042377000, 35074632060, 174689570400, 870043225440, 4333259349600, 21581843340000, 107488595621160, 535348070440800
Offset: 0
-
R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1+x)*(1-x^5)/(1-5*x+14*x^5-10*x^6) )); // G. C. Greubel, May 12 2019
-
CoefficientList[Series[(1+x)*(1-x^5)/(1-5*x+14*x^5-10*x^6), {x, 0, 30}], x] (* or *) LinearRecurrence[{4,4,4,4,-10}, {1,6,30,150,750,3735}, 30] (* G. C. Greubel, Dec 18 2016 *)
coxG[{5, 10, -4}] (* The coxG program is at A169452 *) (* G. C. Greubel, May 12 2019 *)
-
my(x='x+O('x^30)); Vec((1+x)*(1-x^5)/(1-5*x+14*x^5-10*x^6)) \\ G. C. Greubel, Dec 18 2016
-
((1+x)*(1-x^5)/(1-5*x+14*x^5-10*x^6)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, May 12 2019
A163345
Number of reduced words of length n in Coxeter group on 7 generators S_i with relations (S_i)^2 = (S_i S_j)^5 = I.
Original entry on oeis.org
1, 7, 42, 252, 1512, 9051, 54180, 324345, 1941660, 11623500, 69582660, 416548125, 2493614550, 14927719275, 89362970550, 534960522600, 3202475913000, 19171231408875, 114766238286000, 687034086094125, 4112845750671000
Offset: 0
-
R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1+x)*(1-x^5)/(1-6*x+20*x^5-15*x^6) )); // G. C. Greubel, May 12 2019
-
CoefficientList[Series[(1+x)*(1-x^5)/(1-6*x+20*x^5-15*x^6), {x, 0, 30}], x] (* or *) LinearRecurrence[{5,5,5,5,-15}, {1,7,42,252,1512,9051}, 30] (* G. C. Greubel, Dec 19 2016 *)
coxG[{5,15,-5}] (* The coxG program is at A169452 *) (* Harvey P. Dale, May 09 2018 *)
-
my(x='x+O('x^30)); Vec((1+x)*(1-x^5)/(1-6*x+20*x^5-15*x^6)) \\ G. C. Greubel, Dec 19 2016
-
((1+x)*(1-x^5)/(1-6*x+20*x^5-15*x^6)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, May 12 2019
A163347
Number of reduced words of length n in Coxeter group on 8 generators S_i with relations (S_i)^2 = (S_i S_j)^5 = I.
Original entry on oeis.org
1, 8, 56, 392, 2744, 19180, 134064, 937104, 6550320, 45786384, 320044452, 2237094216, 15637173048, 109303031880, 764022547512, 5340478146444, 37329666414768, 260932440209616, 1823904280240560, 12748996716570576
Offset: 0
-
R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1+x)*(1-x^5)/(1-7*x+27*x^5-21*x^6) )); // G. C. Greubel, May 12 2019
-
CoefficientList[Series[(1+x)*(1-x^5)/(1-7*x+27*x^5-21*x^6), {x, 0, 30}], x] (* or *) LinearRecurrence[{6,6,6,6,-21}, {1,8,56,392,2744,19180}, 30] (* G. C. Greubel, Dec 19 2016 *)
coxG[{5, 21, -6}] (* The coxG program is at A169452 *) (* G. C. Greubel, May 12 2019 *)
-
my(x='x+O('x^30)); Vec((1+x)*(1-x^5)/(1-7*x+27*x^5-21*x^6)) \\ G. C. Greubel, Dec 19 2016
-
((1+x)*(1-x^5)/(1-7*x+27*x^5-21*x^6)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, May 12 2019
A163391
Number of reduced words of length n in Coxeter group on 9 generators S_i with relations (S_i)^2 = (S_i S_j)^5 = I.
Original entry on oeis.org
1, 9, 72, 576, 4608, 36828, 294336, 2352420, 18801216, 150264576, 1200956652, 9598382640, 76712967828, 613111567824, 4900159716480, 39163451657148, 313005296651040, 2501626174048260, 19993698450611424, 159795249138713664
Offset: 0
-
R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1+x)*(1-x^5)/(1-8*x+35*x^5-28*x^6) )); // G. C. Greubel, May 12 2019
-
CoefficientList[Series[(1+x)*(1-x^5)/(1-8*x+35*x^5-28*x^6), {x, 0, 30}], x] (* or *) LinearRecurrence[{7,7,7,7,-28}, {1,9,72,576,4608,36828}, 30] (* G. C. Greubel, Dec 21 2016 *)
coxG[{5, 28, -7}] (* The coxG program is at A169452 *) (* G. C. Greubel, May 12 2019 *)
-
my(x='x+O('x^30)); Vec((1+x)*(1-x^5)/(1-8*x+35*x^5-28*x^6)) \\ G. C. Greubel, Dec 21 2016
-
((1+x)*(1-x^5)/(1-8*x+35*x^5-28*x^6)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, May 12 2019
A163397
Number of reduced words of length n in Coxeter group on 10 generators S_i with relations (S_i)^2 = (S_i S_j)^5 = I.
Original entry on oeis.org
1, 10, 90, 810, 7290, 65565, 589680, 5303520, 47699280, 429001920, 3858394860, 34701968160, 312105587040, 2807042441760, 25246223065440, 227061682284240, 2042167156174080, 18367021030590720, 165190915209012480
Offset: 0
-
R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1+x)*(1-x^5)/(1-9*x+44*x^5-36*x^6) )); // G. C. Greubel, May 12 2019
-
CoefficientList[Series[(1+x)*(1-x^5)/(1-9*x+44*x^5-36*x^6), {x, 0, 30}], x] (* or *) LinearRecurrence[{8,8,8,8,-36}, {1,10,90,810,7290,65565}, 30] (* G. C. Greubel, Dec 21 2016 *)
coxG[{5, 36, -8}] (* The coxG program is at A169452 *) (* G. C. Greubel, May 12 2019 *)
-
my(x='x+O('x^30)); Vec((1+x)*(1-x^5)/(1-9*x+44*x^5-36*x^6)) \\ G. C. Greubel, Dec 21 2016
-
((1+x)*(1-x^5)/(1-9*x+44*x^5-36*x^6)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, May 12 2019
A163404
Number of reduced words of length n in Coxeter group on 11 generators S_i with relations (S_i)^2 = (S_i S_j)^5 = I.
Original entry on oeis.org
1, 11, 110, 1100, 11000, 109945, 1098900, 10983555, 109781100, 1097266500, 10967222970, 109617836625, 1095634704780, 10950913128375, 109454819042250, 1094005337374620, 10934627535602100, 109292043884611005
Offset: 0
-
R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1+x)*(1-x^5)/(1-10*x+54*x^5-45*x^6) )); // G. C. Greubel, May 12 2019
-
CoefficientList[Series[(1 + x)*(1-x^5)/(1-10*x+54*x^5-45*x^6), {x, 0, 30}], x] (* or *) LinearRecurrence[{9, 9, 9, 9, -45}, {1, 11, 110, 1100, 11000, 109945}, 30] (* G. C. Greubel, Dec 21 2016 *)
coxG[{5, 45, -9}] (* The coxG program is at A169452 *) (* G. C. Greubel, May 12 2019 *)
-
my(x='x+O('x^30)); Vec((1+x)*(1-x^5)/(1-10*x+54*x^5-45*x^6)) \\ G. C. Greubel, Dec 21 2016
-
((1+x)*(1-x^5)/(1-10*x+54*x^5-45*x^6)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, May 12 2019
A163432
Number of reduced words of length n in Coxeter group on 12 generators S_i with relations (S_i)^2 = (S_i S_j)^5 = I.
Original entry on oeis.org
1, 12, 132, 1452, 15972, 175626, 1931160, 21234840, 233496120, 2567499000, 28231951770, 310435603500, 3413517587700, 37534684133100, 412727480315700, 4538308419052650, 49902767052699000, 548725632894681000
Offset: 0
-
R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1+x)*(1-x^5)/(1-11*x+65*x^5-55*x^6) )); // G. C. Greubel, May 12 2019
-
CoefficientList[Series[(1+x)*(1-x^5)/(1-11*x+65*x^5-55*x^6), {x, 0, 30}], x] (* or *) LinearRecurrence[{10,10,10,10,-55}, {1,12,132,1452,15972, 175626}, 30] (* G. C. Greubel, Dec 23 2016 *)
coxG[{5, 55, -10}] (* The coxG program is at A169452 *) (* G. C. Greubel, May 12 2019 *)
-
my(x='x+O('x^30)); Vec((1+x)*(1-x^5)/(1-11*x+65*x^5-55*x^6)) \\ G. C. Greubel, Dec 23 2016
-
((1+x)*(1-x^5)/(1-11*x+65*x^5-55*x^6)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, May 12 2019
A163438
Number of reduced words of length n in Coxeter group on 13 generators S_i with relations (S_i)^2 = (S_i S_j)^5 = I.
Original entry on oeis.org
1, 13, 156, 1872, 22464, 269490, 3232944, 38784174, 465276240, 5581708704, 66961236342, 803303685756, 9636871221978, 115609188148740, 1386911174446512, 16638146470934274, 199600322709006648
Offset: 0
-
R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1+x)*(1-x^5)/(1-12*x+77*x^5-66*x^6) )); // G. C. Greubel, May 12 2019
-
CoefficientList[Series[(1+x)*(1-x^5)/(1-12*x+77*x^5-66*x^6), {x, 0, 10}], x] (* or *) LinearRecurrence[{11, 11, 11, 11, -66}, {1, 13, 156, 1872, 22464, 269490}, 30] (* G. C. Greubel, Dec 23 2016 *)
coxG[{5, 66, -11}] (* The coxG program is at A169452 *) (* G. C. Greubel, May 12 2019 *)
-
my(x='x+O('x^30)); Vec((1+x)*(1-x^5)/(1-12*x+77*x^5-66*x^6)) \\ G. C. Greubel, Dec 23 2016
-
((1+x)*(1-x^5)/(1-12*x+77*x^5-66*x^6)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, May 12 2019
A163439
Number of reduced words of length n in Coxeter group on 14 generators S_i with relations (S_i)^2 = (S_i S_j)^5 = I.
Original entry on oeis.org
1, 14, 182, 2366, 30758, 399763, 5195736, 67529280, 877681896, 11407280976, 148261073142, 1926957516120, 25044775341768, 325508355356184, 4230650423530440, 54986001777229068, 714656161291232160
Offset: 0
-
R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1+x)*(1-x^5)/(1-13*x+90*x^5-78*x^6) )); // G. C. Greubel, May 12 2019
-
CoefficientList[Series[(1+x)*(1-x^5)/(1-13*x+90*x^5-78*x^6), {x, 0, 30}], x] (* or *) LinearRecurrence[{12, 12, 12, 12, -78}, {1, 14, 182, 2366, 30758, 399763}, 30] (* G. C. Greubel, Dec 23 2016 *)
coxG[{5, 78, -12}] (* The coxG program is at A169452 *) (* G. C. Greubel, May 12 2019 *)
-
my(x='x+O('x^30)); Vec((1+x)*(1-x^5)/(1-13*x+90*x^5-78*x^6)) \\ G. C. Greubel, Dec 23 2016
-
((1+x)*(1-x^5)/(1-13*x+90*x^5-78*x^6)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, May 12 2019
Comments