A166954
Number of reduced words of length n in Coxeter group on 13 generators S_i with relations (S_i)^2 = (S_i S_j)^13 = I.
Original entry on oeis.org
1, 13, 156, 1872, 22464, 269568, 3234816, 38817792, 465813504, 5589762048, 67077144576, 804925734912, 9659108818944, 115909305827250, 1390911669926064, 16690940039101614, 200291280469085520
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, -66).
-
CoefficientList[Series[(t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(66*t^13 - 11*t^12 - 11*t^11 - 11*t^10 - 11*t^9 - 11*t^8 - 11*t^7 - 11*t^6 - 11*t^5 - 11*t^4 - 11*t^3 - 11*t^2 - 11*t + 1), {t, 0, 50}], t] (* G. C. Greubel, May 29 2016 *)
A167114
Number of reduced words of length n in Coxeter group on 13 generators S_i with relations (S_i)^2 = (S_i S_j)^14 = I.
Original entry on oeis.org
1, 13, 156, 1872, 22464, 269568, 3234816, 38817792, 465813504, 5589762048, 67077144576, 804925734912, 9659108818944, 115909305827328, 1390911669927858, 16690940039133360, 200291280469589166
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, -66).
-
coxG[{14,66,-11}] (* The coxG program is at A169452 *) (* Harvey P. Dale, May 25 2016 *)
CoefficientList[Series[(t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/ (66*t^14 - 11*t^13 - 11*t^12 - 11*t^11 - 11*t^10 - 11*t^9 - 11*t^8 - 11*t^7 - 11*t^6 - 11*t^5 - 11*t^4 - 11*t^3 - 11*t^2 - 11*t + 1), {t, 0, 50}], t] (* G. C. Greubel, Jun 03 2016 *)
A167669
Number of reduced words of length n in Coxeter group on 13 generators S_i with relations (S_i)^2 = (S_i S_j)^15 = I.
Original entry on oeis.org
1, 13, 156, 1872, 22464, 269568, 3234816, 38817792, 465813504, 5589762048, 67077144576, 804925734912, 9659108818944, 115909305827328, 1390911669927936, 16690940039135154, 200291280469620912
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, -66).
-
CoefficientList[Series[(t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(66*t^15 - 11*t^14 - 11*t^13 - 11*t^12 - 11*t^11 - 11*t^10 - 11*t^9 - 11*t^8 - 11*t^7 - 11*t^6 - 11*t^5 - 11*t^4 - 11*t^3 - 11*t^2 - 11*t + 1), {t, 0, 50}], t] (* G. C. Greubel, Jun 19 2016 *)
A168690
Number of reduced words of length n in Coxeter group on 13 generators S_i with relations (S_i)^2 = (S_i S_j)^17 = I.
Original entry on oeis.org
1, 13, 156, 1872, 22464, 269568, 3234816, 38817792, 465813504, 5589762048, 67077144576, 804925734912, 9659108818944, 115909305827328, 1390911669927936, 16690940039135232, 200291280469622784
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, -66).
Cf.
A170732 (G.f.: (1+x)/(1-12*x)).
-
CoefficientList[Series[(t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(66*t^17 - 11*t^16 - 11*t^15 - 11*t^14 - 11*t^13 - 11*t^12 - 11*t^11 - 11*t^10 - 11*t^9 - 11*t^8 - 11*t^7 - 11*t^6 - 11*t^5 - 11*t^4 - 11*t^3 - 11*t^2 - 11*t + 1), {t,0,50}], t] (* G. C. Greubel, Aug 03 2016 *)
A168738
Number of reduced words of length n in Coxeter group on 13 generators S_i with relations (S_i)^2 = (S_i S_j)^18 = I.
Original entry on oeis.org
1, 13, 156, 1872, 22464, 269568, 3234816, 38817792, 465813504, 5589762048, 67077144576, 804925734912, 9659108818944, 115909305827328, 1390911669927936, 16690940039135232, 200291280469622784
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, -66).
Cf.
A170732 (G.f.: (1+x)/(1-12*x)).
-
CoefficientList[Series[(t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(66*t^18 - 11*t^17 - 11*t^16 - 11*t^15 - 11*t^14 - 11*t^13 - 11*t^12 - 11*t^11 - 11*t^10 - 11*t^9 - 11*t^8 - 11*t^7 - 11*t^6 - 11*t^5 - 11*t^4 - 11*t^3 - 11*t^2 - 11*t + 1), {t, 0, 50}], t] (* G. C. Greubel, Aug 08 2016 *)
coxG[{18,66,-11}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Jul 07 2025 *)
A168786
Number of reduced words of length n in Coxeter group on 13 generators S_i with relations (S_i)^2 = (S_i S_j)^19 = I.
Original entry on oeis.org
1, 13, 156, 1872, 22464, 269568, 3234816, 38817792, 465813504, 5589762048, 67077144576, 804925734912, 9659108818944, 115909305827328, 1390911669927936, 16690940039135232, 200291280469622784
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, -66).
Cf.
A170732 (G.f.: (1+x)/(1-12*x)).
-
CoefficientList[Series[(t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(66*t^19 - 11*t^18 - 11*t^17 - 11*t^16 - 11*t^15 - 11*t^14 - 11*t^13 - 11*t^12 - 11*t^11 - 11*t^10 - 11*t^9 - 11*t^8 - 11*t^7 - 11*t^6 - 11*t^5 - 11*t^4 - 11*t^3 - 11*t^2 - 11*t + 1), {t, 0, 50}], t] (* G. C. Greubel, Aug 15 2016 *)
A162768
Number of reduced words of length n in Coxeter group on 13 generators S_i with relations (S_i)^2 = (S_i S_j)^3 = I.
Original entry on oeis.org
1, 13, 156, 1794, 20592, 235950, 2703558, 30975516, 354897114, 4066164102, 46587289320, 533764778118, 6115505911086, 70067216486124, 802781471013522, 9197712172364430, 105380993789073288, 1207382188488922446
Offset: 0
A163084
Number of reduced words of length n in Coxeter group on 13 generators S_i with relations (S_i)^2 = (S_i S_j)^4 = I.
Original entry on oeis.org
1, 13, 156, 1872, 22386, 267696, 3201198, 38280528, 457766166, 5474058876, 65459882202, 782782264836, 9360665698098, 111936698410680, 1338561257884422, 16006781212446024, 191412266920077918, 2288945881199387124, 27371669179630649874, 327315853045229826492
Offset: 0
-
CoefficientList[Series[(t^4+2t^3+2t^2+2t+1)/(66t^4-11t^3-11t^2- 11t+1), {t,0,30}],t] (* Harvey P. Dale, Jun 19 2011 *)
A164815
Number of reduced words of length n in Coxeter group on 13 generators S_i with relations (S_i)^2 = (S_i S_j)^8 = I.
Original entry on oeis.org
1, 13, 156, 1872, 22464, 269568, 3234816, 38817792, 465813426, 5589760176, 67077110958, 804925197648, 9659100765600, 115909189913088, 1390910047667712, 16690917796540416, 200290980252825462
Offset: 0
-
With[{num=Total[2t^Range[7]]+t^8+1,den=Total[-11 t^Range[7]]+66t^8+1}, CoefficientList[Series[num/den,{t,0,30}],t]] (* Harvey P. Dale, Aug 21 2011 *)
A165269
Number of reduced words of length n in Coxeter group on 13 generators S_i with relations (S_i)^2 = (S_i S_j)^9 = I.
Original entry on oeis.org
1, 13, 156, 1872, 22464, 269568, 3234816, 38817792, 465813504, 5589761970, 67077142704, 804925701294, 9659108281680, 115909297773984, 1390911554013696, 16690938416875008, 200291258227027968
Offset: 0
Comments