cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 49 results. Next

A168917 Number of reduced words of length n in Coxeter group on 48 generators S_i with relations (S_i)^2 = (S_i S_j)^21 = I.

Original entry on oeis.org

1, 48, 2256, 106032, 4983504, 234224688, 11008560336, 517402335792, 24317909782224, 1142941759764528, 53718262708932816, 2524758347319842352, 118663642324032590544, 5577191189229531755568, 262127985893787992511696
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170767, although the two sequences are eventually different.
First disagreement at index 21: a(21) = 132800098174192118853635904544434120, A170767(21) = 132800098174192118853635904544435248. - Klaus Brockhaus, Apr 08 2011
Computed with MAGMA using commands similar to those used to compute A154638.

Crossrefs

Cf. A170767 (G.f.: (1+x)/(1-47*x)).

Programs

Formula

G.f.: (t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(1081*t^21 - 46*t^20 - 46*t^19 - 46*t^18 - 46*t^17 - 46*t^16 - 46*t^15 - 46*t^14 - 46*t^13 - 46*t^12 - 46*t^11 - 46*t^10 - 46*t^9 - 46*t^8 - 46*t^7 - 46*t^6 - 46*t^5 - 46*t^4 - 46*t^3 - 46*t^2 - 46*t + 1).

A168965 Number of reduced words of length n in Coxeter group on 48 generators S_i with relations (S_i)^2 = (S_i S_j)^22 = I.

Original entry on oeis.org

1, 48, 2256, 106032, 4983504, 234224688, 11008560336, 517402335792, 24317909782224, 1142941759764528, 53718262708932816, 2524758347319842352, 118663642324032590544, 5577191189229531755568, 262127985893787992511696
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170767, although the two sequences are eventually different.
First disagreement at index 22: a(22) = 6241604614187029586120887513588455528, A170767(22) = 6241604614187029586120887513588456656. - Klaus Brockhaus, Apr 10 2011
Computed with MAGMA using commands similar to those used to compute A154638.

Crossrefs

Cf. A170767 (G.f.: (1+x)/(1-47*x)).

Formula

G.f.: (t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(1081*t^22 - 46*t^21 - 46*t^20 - 46*t^19 - 46*t^18 - 46*t^17 - 46*t^16 - 46*t^15 - 46*t^14 - 46*t^13 - 46*t^12 - 46*t^11 - 46*t^10 - 46*t^9 - 46*t^8 - 46*t^7 - 46*t^6 - 46*t^5 - 46*t^4 - 46*t^3 - 46*t^2 - 46*t + 1).

A169013 Number of reduced words of length n in Coxeter group on 48 generators S_i with relations (S_i)^2 = (S_i S_j)^23 = I.

Original entry on oeis.org

1, 48, 2256, 106032, 4983504, 234224688, 11008560336, 517402335792, 24317909782224, 1142941759764528, 53718262708932816, 2524758347319842352, 118663642324032590544, 5577191189229531755568, 262127985893787992511696
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170767, although the two sequences are eventually different.
First disagreement at index 23: a(23) = 293355416866790390547681713138657461704, A170767(23) = 293355416866790390547681713138657462832. - Klaus Brockhaus, Apr 19 2011
Computed with MAGMA using commands similar to those used to compute A154638.

Crossrefs

Cf. A170767 (G.f.: (1+x)/(1-47*x)).

Formula

G.f.: (t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(1081*t^23 - 46*t^22 - 46*t^21 - 46*t^20 - 46*t^19 - 46*t^18 - 46*t^17 - 46*t^16 - 46*t^15 - 46*t^14 - 46*t^13 - 46*t^12 - 46*t^11 - 46*t^10 - 46*t^9 - 46*t^8 - 46*t^7 - 46*t^6 - 46*t^5 - 46*t^4 - 46*t^3 - 46*t^2 - 46*t + 1).

A169061 Number of reduced words of length n in Coxeter group on 48 generators S_i with relations (S_i)^2 = (S_i S_j)^24 = I.

Original entry on oeis.org

1, 48, 2256, 106032, 4983504, 234224688, 11008560336, 517402335792, 24317909782224, 1142941759764528, 53718262708932816, 2524758347319842352, 118663642324032590544, 5577191189229531755568, 262127985893787992511696
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170767, although the two sequences are eventually different.
First disagreement at index 24: a(24) = 13787704592739148355741040517516900751976, A170767(24) = 13787704592739148355741040517516900753104. - Klaus Brockhaus, Apr 20 2011
Computed with MAGMA using commands similar to those used to compute A154638.

Crossrefs

Cf. A170767 (G.f.: (1+x)/(1-47*x)).

Programs

Formula

G.f.: (t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(1081*t^24 - 46*t^23 - 46*t^22 - 46*t^21 - 46*t^20 - 46*t^19 - 46*t^18 - 46*t^17 - 46*t^16 - 46*t^15 - 46*t^14 - 46*t^13 - 46*t^12 - 46*t^11 - 46*t^10 - 46*t^9 - 46*t^8 - 46*t^7 - 46*t^6 - 46*t^5 - 46*t^4 - 46*t^3 - 46*t^2 - 46*t + 1).

A169109 Number of reduced words of length n in Coxeter group on 48 generators S_i with relations (S_i)^2 = (S_i S_j)^25 = I.

Original entry on oeis.org

1, 48, 2256, 106032, 4983504, 234224688, 11008560336, 517402335792, 24317909782224, 1142941759764528, 53718262708932816, 2524758347319842352, 118663642324032590544, 5577191189229531755568, 262127985893787992511696
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170767, although the two sequences are eventually different.
First disagreement at index 25: a(25) = 648022115858739972719828904323294335394760, A170767(25) = 648022115858739972719828904323294335395888. - Klaus Brockhaus, Apr 25 2011
Computed with MAGMA using commands similar to those used to compute A154638.

Crossrefs

Cf. A170767 (G.f.: (1+x)/(1-47*x)).

Programs

  • Mathematica
    With[{num=Total[2t^Range[24]]+t^25+1,den=Total[-46 t^Range[24]]+1081t^25+ 1},CoefficientList[Series[num/den,{t,0,30}],t]] (* Harvey P. Dale, Apr 01 2014 *)
    coxG[{25,1081,-46}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Jan 25 2025 *)

Formula

G.f.: (t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(1081*t^25 - 46*t^24 - 46*t^23 - 46*t^22 - 46*t^21 - 46*t^20 - 46*t^19 - 46*t^18 - 46*t^17 - 46*t^16 - 46*t^15 - 46*t^14 - 46*t^13 - 46*t^12 - 46*t^11 - 46*t^10 - 46*t^9 - 46*t^8 - 46*t^7 - 46*t^6 - 46*t^5 - 46*t^4 - 46*t^3 - 46*t^2 - 46*t + 1).

A169157 Number of reduced words of length n in Coxeter group on 48 generators S_i with relations (S_i)^2 = (S_i S_j)^26 = I.

Original entry on oeis.org

1, 48, 2256, 106032, 4983504, 234224688, 11008560336, 517402335792, 24317909782224, 1142941759764528, 53718262708932816, 2524758347319842352, 118663642324032590544, 5577191189229531755568, 262127985893787992511696
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170767, although the two sequences are eventually different.
First disagreement at index 26: a(26) = 30457039445360778717831958503194833763605608, A170767(26) = 30457039445360778717831958503194833763606736. - Klaus Brockhaus, Apr 30 2011
Computed with MAGMA using commands similar to those used to compute A154638.

Crossrefs

Cf. A170767 (G.f.: (1+x)/(1-47*x)).

Programs

Formula

G.f.: (t^26 + 2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(1081*t^26 - 46*t^25 - 46*t^24 - 46*t^23 - 46*t^22 - 46*t^21 - 46*t^20 - 46*t^19 - 46*t^18 - 46*t^17 - 46*t^16 - 46*t^15 - 46*t^14 - 46*t^13 - 46*t^12 - 46*t^11 - 46*t^10 - 46*t^9 - 46*t^8 - 46*t^7 - 46*t^6 - 46*t^5 - 46*t^4 - 46*t^3 - 46*t^2 - 46*t + 1).

A169205 Number of reduced words of length n in Coxeter group on 48 generators S_i with relations (S_i)^2 = (S_i S_j)^27 = I.

Original entry on oeis.org

1, 48, 2256, 106032, 4983504, 234224688, 11008560336, 517402335792, 24317909782224, 1142941759764528, 53718262708932816, 2524758347319842352, 118663642324032590544, 5577191189229531755568, 262127985893787992511696
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170767, although the two sequences are eventually different.
First disagreement at index 27: a(27) = 1431480853931956599738102049650157186889515464, A170767(27) = 1431480853931956599738102049650157186889516592. - Klaus Brockhaus, May 07 2011
Computed with Magma using commands similar to those used to compute A154638.

Crossrefs

Cf. A170767 (G.f.: (1+x)/(1-47*x)).

Programs

  • Mathematica
    With[{num=Total[2t^Range[26]]+t^27+1,den=Total[-46 t^Range[26]]+ 1081t^27+ 1},CoefficientList[Series[num/den,{t,0,30}],t]] (* Harvey P. Dale, May 03 2012 *)

Formula

G.f.: (t^27 + 2*t^26 + 2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(1081*t^27 - 46*t^26 - 46*t^25 - 46*t^24 - 46*t^23 - 46*t^22 - 46*t^21 - 46*t^20 - 46*t^19 - 46*t^18 - 46*t^17 - 46*t^16 - 46*t^15 - 46*t^14 - 46*t^13 - 46*t^12 - 46*t^11 - 46*t^10 - 46*t^9 - 46*t^8 - 46*t^7 - 46*t^6 - 46*t^5 - 46*t^4 - 46*t^3 - 46*t^2 - 46*t + 1).

A169253 Number of reduced words of length n in Coxeter group on 48 generators S_i with relations (S_i)^2 = (S_i S_j)^28 = I.

Original entry on oeis.org

1, 48, 2256, 106032, 4983504, 234224688, 11008560336, 517402335792, 24317909782224, 1142941759764528, 53718262708932816, 2524758347319842352, 118663642324032590544, 5577191189229531755568, 262127985893787992511696
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170767, although the two sequences are eventually different.
First disagreement at index 28: a(28) = 67279600134801960187690796333557387783807278696, A170767(28) = 67279600134801960187690796333557387783807279824. - Klaus Brockhaus, May 24 2011
Computed with Magma using commands similar to those used to compute A154638.

Crossrefs

Cf. A170767 (G.f.: (1+x)/(1-47*x)).

Programs

Formula

G.f.: (t^28 + 2*t^27 + 2*t^26 + 2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(1081*t^28 - 46*t^27 - 46*t^26 - 46*t^25 - 46*t^24 - 46*t^23 - 46*t^22 - 46*t^21 - 46*t^20 - 46*t^19 - 46*t^18 - 46*t^17 - 46*t^16 - 46*t^15 - 46*t^14 - 46*t^13 - 46*t^12 - 46*t^11 - 46*t^10 - 46*t^9 - 46*t^8 - 46*t^7 - 46*t^6 - 46*t^5 - 46*t^4 - 46*t^3 - 46*t^2 - 46*t + 1).

A169301 Number of reduced words of length n in Coxeter group on 48 generators S_i with relations (S_i)^2 = (S_i S_j)^29 = I.

Original entry on oeis.org

1, 48, 2256, 106032, 4983504, 234224688, 11008560336, 517402335792, 24317909782224, 1142941759764528, 53718262708932816, 2524758347319842352, 118663642324032590544, 5577191189229531755568, 262127985893787992511696
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170767, although the two sequences are eventually different.
First disagreement at index 29: a(29) = 3162141206335692128821467427677197225838942150600, A170767(29) = 3162141206335692128821467427677197225838942151728. - Klaus Brockhaus, Jun 03 2011
Computed with Magma using commands similar to those used to compute A154638.

Crossrefs

Cf. A170767 (G.f.: (1+x)/(1-47*x)).

Programs

Formula

G.f.: (t^29 + 2*t^28 + 2*t^27 + 2*t^26 + 2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(1081*t^29 - 46*t^28 - 46*t^27 - 46*t^26 - 46*t^25 - 46*t^24 - 46*t^23 - 46*t^22 - 46*t^21 - 46*t^20 - 46*t^19 - 46*t^18 - 46*t^17 - 46*t^16 - 46*t^15 - 46*t^14 - 46*t^13 - 46*t^12 - 46*t^11 - 46*t^10 - 46*t^9 - 46*t^8 - 46*t^7 - 46*t^6 - 46*t^5 - 46*t^4 - 46*t^3 - 46*t^2 - 46*t + 1).

A169349 Number of reduced words of length n in Coxeter group on 48 generators S_i with relations (S_i)^2 = (S_i S_j)^30 = I.

Original entry on oeis.org

1, 48, 2256, 106032, 4983504, 234224688, 11008560336, 517402335792, 24317909782224, 1142941759764528, 53718262708932816, 2524758347319842352, 118663642324032590544, 5577191189229531755568, 262127985893787992511696
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170767, although the two sequences are eventually different.
First disagreement at index 30: a(30) = 148620636697777530054608969100828269614430281130088, A170767(30) = 148620636697777530054608969100828269614430281131216. - Klaus Brockhaus, Jun 23 2011
Computed with Magma using commands similar to those used to compute A154638.

Crossrefs

Cf. A170767 (G.f.: (1+x)/(1-47*x)).

Formula

G.f.: (t^30 + 2*t^29 + 2*t^28 + 2*t^27 + 2*t^26 + 2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(1081*t^30 - 46*t^29 - 46*t^28 - 46*t^27 - 46*t^26 - 46*t^25 - 46*t^24 - 46*t^23 - 46*t^22 - 46*t^21 - 46*t^20 - 46*t^19 - 46*t^18 - 46*t^17 - 46*t^16 - 46*t^15 - 46*t^14 - 46*t^13 - 46*t^12 - 46*t^11 - 46*t^10 - 46*t^9 - 46*t^8 - 46*t^7 - 46*t^6 - 46*t^5 - 46*t^4 - 46*t^3 - 46*t^2 - 46*t + 1).
Previous Showing 21-30 of 49 results. Next