cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A240303 Number of partitions of n such that (maximal multiplicity of parts) = (multiplicity of the least part).

Original entry on oeis.org

0, 1, 2, 3, 5, 6, 11, 13, 19, 26, 37, 44, 66, 80, 108, 139, 182, 226, 298, 366, 474, 588, 742, 911, 1154, 1408, 1751, 2143, 2642, 3205, 3944, 4761, 5805, 6998, 8479, 10177, 12285, 14679, 17620, 21014, 25114, 29822, 35529, 42057, 49894, 58927, 69644, 81994
Offset: 0

Views

Author

Clark Kimberling, Apr 04 2014

Keywords

Examples

			a(7) counts all the 15 partitions of 7 except 331 and 2221, so that a(7) = 13.
		

Crossrefs

Programs

  • Mathematica
    z = 60; f[n_] := f[n] = IntegerPartitions[n]; m[p_] := Max[Map[Length, Split[p]]] (* maximal multiplicity *)
    Table[Count[f[n], p_ /; m[p] == Count[p, Min[p]]], {n, 0, z}] (* A240303 *)
    Table[Count[f[n], p_ /; m[p] > Count[p, Min[p]]], {n, 0, z}] (* A240304 *)

Formula

a(n) + A240304(n) = A000041(n) for n >= 1.

A362981 Heinz numbers of integer partitions such that 2*(least part) >= greatest part.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 15, 16, 17, 18, 19, 21, 23, 24, 25, 27, 29, 31, 32, 35, 36, 37, 41, 43, 45, 47, 48, 49, 53, 54, 55, 59, 61, 63, 64, 65, 67, 71, 72, 73, 75, 77, 79, 81, 83, 89, 91, 96, 97, 101, 103, 105, 107, 108, 109, 113, 119, 121, 125
Offset: 1

Views

Author

Gus Wiseman, May 14 2023

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
By conjugation, also Heinz numbers of partitions whose greatest part appears at a middle position, namely k/2, (k+1)/2, or (k+2)/2, where k is the number of parts. These partitions have ranks A362622.

Examples

			The terms together with their prime indices begin:
     1: {}         16: {1,1,1,1}      36: {1,1,2,2}
     2: {1}        17: {7}            37: {12}
     3: {2}        18: {1,2,2}        41: {13}
     4: {1,1}      19: {8}            43: {14}
     5: {3}        21: {2,4}          45: {2,2,3}
     6: {1,2}      23: {9}            47: {15}
     7: {4}        24: {1,1,1,2}      48: {1,1,1,1,2}
     8: {1,1,1}    25: {3,3}          49: {4,4}
     9: {2,2}      27: {2,2,2}        53: {16}
    11: {5}        29: {10}           54: {1,2,2,2}
    12: {1,1,2}    31: {11}           55: {3,5}
    13: {6}        32: {1,1,1,1,1}    59: {17}
    15: {2,3}      35: {3,4}          61: {18}
		

Crossrefs

For prime factors instead of indices we have A081306.
Prime indices are listed by A112798, length A001222, sum A056239.
The complement is A362982, counted by A237820.
Partitions of this type are counted by A237824.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],2*Min@@prix[#]>=Max@@prix[#]&]

A362982 Heinz numbers of partitions such that 2*(least part) < greatest part.

Original entry on oeis.org

10, 14, 20, 22, 26, 28, 30, 33, 34, 38, 39, 40, 42, 44, 46, 50, 51, 52, 56, 57, 58, 60, 62, 66, 68, 69, 70, 74, 76, 78, 80, 82, 84, 85, 86, 87, 88, 90, 92, 93, 94, 95, 98, 99, 100, 102, 104, 106, 110, 111, 112, 114, 115, 116, 117, 118, 120, 122, 123, 124, 126
Offset: 1

Views

Author

Gus Wiseman, May 14 2023

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.

Examples

			The terms together with their prime indices begin:
    10: {1,3}        44: {1,1,5}      70: {1,3,4}
    14: {1,4}        46: {1,9}        74: {1,12}
    20: {1,1,3}      50: {1,3,3}      76: {1,1,8}
    22: {1,5}        51: {2,7}        78: {1,2,6}
    26: {1,6}        52: {1,1,6}      80: {1,1,1,1,3}
    28: {1,1,4}      56: {1,1,1,4}    82: {1,13}
    30: {1,2,3}      57: {2,8}        84: {1,1,2,4}
    33: {2,5}        58: {1,10}       85: {3,7}
    34: {1,7}        60: {1,1,2,3}    86: {1,14}
    38: {1,8}        62: {1,11}       87: {2,10}
    39: {2,6}        66: {1,2,5}      88: {1,1,1,5}
    40: {1,1,1,3}    68: {1,1,7}      90: {1,2,2,3}
    42: {1,2,4}      69: {2,9}        92: {1,1,9}
		

Crossrefs

For prime factors instead of indices we have A069900, complement A081306.
Prime indices are listed by A112798, length A001222, sum A056239.
Partitions of this type are counted by A237820.
The complement is A362981, counted by A237824.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],2*Min@@prix[#]
    				

A240304 Number of partitions of n such that (maximal multiplicity of parts) > (multiplicity of the least part).

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 2, 3, 4, 5, 12, 11, 21, 27, 37, 49, 71, 87, 124, 153, 204, 260, 344, 421, 550, 685, 867, 1076, 1360, 1660, 2081, 2544, 3145, 3831, 4706, 5692, 6958, 8395, 10171, 12224, 14761, 17645, 21204, 25281, 30207, 35914, 42760, 50618, 60057, 70914
Offset: 0

Views

Author

Clark Kimberling, Apr 04 2014

Keywords

Examples

			a(7) counts these 2 partitions of 7: 331, 2221.
		

Crossrefs

Programs

  • Mathematica
    z = 60; f[n_] := f[n] = IntegerPartitions[n]; m[p_] := Max[Map[Length, Split[p]]] (* maximal multiplicity *)
    Table[Count[f[n], p_ /; m[p] == Count[p, Min[p]]], {n, 0, z}] (* A240303 *)
    Table[Count[f[n], p_ /; m[p] > Count[p, Min[p]]], {n, 0, z}] (* A240304 *)

Formula

a(n) + A240303(n) = A000041(n) for n >= 1.

A364193 Number of integer partitions of n where the least part is the unique mode.

Original entry on oeis.org

0, 1, 2, 2, 4, 4, 7, 9, 13, 17, 24, 32, 43, 58, 75, 97, 130, 167, 212, 274, 346, 438, 556, 695, 865, 1082, 1342, 1655, 2041, 2511, 3067, 3756, 4568, 5548, 6728, 8130, 9799, 11810, 14170, 16980, 20305, 24251, 28876, 34366, 40781, 48342, 57206, 67597, 79703
Offset: 0

Views

Author

Gus Wiseman, Jul 16 2023

Keywords

Comments

A mode in a multiset is an element that appears at least as many times as each of the others. For example, the modes in {a,a,b,b,b,c,d,d,d} are {b,d}.

Examples

			The a(1) = 1 through a(8) = 13 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
       (11)  (111)  (22)    (311)    (33)      (322)      (44)
                    (211)   (2111)   (222)     (511)      (422)
                    (1111)  (11111)  (411)     (3211)     (611)
                                     (3111)    (4111)     (2222)
                                     (21111)   (22111)    (4211)
                                     (111111)  (31111)    (5111)
                                               (211111)   (32111)
                                               (1111111)  (41111)
                                                          (221111)
                                                          (311111)
                                                          (2111111)
                                                          (11111111)
		

Crossrefs

For greatest part and multiple modes we have A171979.
Allowing multiple modes gives A240303.
For greatest instead of least part we have A362612, ranks A362616.
For mean instead of least part we have A363723.
These partitions have ranks A364160.
A000041 counts integer partitions.
A362611 counts modes in prime factorization, A362613 co-modes.
A362614 counts partitions by number of modes, co-modes A362615.
A363486 gives least mode in prime indices, A363487 greatest.
A363952 counts partitions by low mode, A363953 high.
Ranking and counting partitions:
- A356862 = unique mode, counted by A362608
- A359178 = unique co-mode, counted by A362610
- A362605 = multiple modes, counted by A362607
- A362606 = multiple co-modes, counted by A362609

Programs

  • Mathematica
    Table[If[n==0,0,Length[Select[IntegerPartitions[n], Last[Length/@Split[#]]>Max@@Most[Length/@Split[#]]&]]],{n,0,30}]
Previous Showing 11-15 of 15 results.