A240303
Number of partitions of n such that (maximal multiplicity of parts) = (multiplicity of the least part).
Original entry on oeis.org
0, 1, 2, 3, 5, 6, 11, 13, 19, 26, 37, 44, 66, 80, 108, 139, 182, 226, 298, 366, 474, 588, 742, 911, 1154, 1408, 1751, 2143, 2642, 3205, 3944, 4761, 5805, 6998, 8479, 10177, 12285, 14679, 17620, 21014, 25114, 29822, 35529, 42057, 49894, 58927, 69644, 81994
Offset: 0
a(7) counts all the 15 partitions of 7 except 331 and 2221, so that a(7) = 13.
-
z = 60; f[n_] := f[n] = IntegerPartitions[n]; m[p_] := Max[Map[Length, Split[p]]] (* maximal multiplicity *)
Table[Count[f[n], p_ /; m[p] == Count[p, Min[p]]], {n, 0, z}] (* A240303 *)
Table[Count[f[n], p_ /; m[p] > Count[p, Min[p]]], {n, 0, z}] (* A240304 *)
A362981
Heinz numbers of integer partitions such that 2*(least part) >= greatest part.
Original entry on oeis.org
1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 15, 16, 17, 18, 19, 21, 23, 24, 25, 27, 29, 31, 32, 35, 36, 37, 41, 43, 45, 47, 48, 49, 53, 54, 55, 59, 61, 63, 64, 65, 67, 71, 72, 73, 75, 77, 79, 81, 83, 89, 91, 96, 97, 101, 103, 105, 107, 108, 109, 113, 119, 121, 125
Offset: 1
The terms together with their prime indices begin:
1: {} 16: {1,1,1,1} 36: {1,1,2,2}
2: {1} 17: {7} 37: {12}
3: {2} 18: {1,2,2} 41: {13}
4: {1,1} 19: {8} 43: {14}
5: {3} 21: {2,4} 45: {2,2,3}
6: {1,2} 23: {9} 47: {15}
7: {4} 24: {1,1,1,2} 48: {1,1,1,1,2}
8: {1,1,1} 25: {3,3} 49: {4,4}
9: {2,2} 27: {2,2,2} 53: {16}
11: {5} 29: {10} 54: {1,2,2,2}
12: {1,1,2} 31: {11} 55: {3,5}
13: {6} 32: {1,1,1,1,1} 59: {17}
15: {2,3} 35: {3,4} 61: {18}
For prime factors instead of indices we have
A081306.
Partitions of this type are counted by
A237824.
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[100],2*Min@@prix[#]>=Max@@prix[#]&]
A362982
Heinz numbers of partitions such that 2*(least part) < greatest part.
Original entry on oeis.org
10, 14, 20, 22, 26, 28, 30, 33, 34, 38, 39, 40, 42, 44, 46, 50, 51, 52, 56, 57, 58, 60, 62, 66, 68, 69, 70, 74, 76, 78, 80, 82, 84, 85, 86, 87, 88, 90, 92, 93, 94, 95, 98, 99, 100, 102, 104, 106, 110, 111, 112, 114, 115, 116, 117, 118, 120, 122, 123, 124, 126
Offset: 1
The terms together with their prime indices begin:
10: {1,3} 44: {1,1,5} 70: {1,3,4}
14: {1,4} 46: {1,9} 74: {1,12}
20: {1,1,3} 50: {1,3,3} 76: {1,1,8}
22: {1,5} 51: {2,7} 78: {1,2,6}
26: {1,6} 52: {1,1,6} 80: {1,1,1,1,3}
28: {1,1,4} 56: {1,1,1,4} 82: {1,13}
30: {1,2,3} 57: {2,8} 84: {1,1,2,4}
33: {2,5} 58: {1,10} 85: {3,7}
34: {1,7} 60: {1,1,2,3} 86: {1,14}
38: {1,8} 62: {1,11} 87: {2,10}
39: {2,6} 66: {1,2,5} 88: {1,1,1,5}
40: {1,1,1,3} 68: {1,1,7} 90: {1,2,2,3}
42: {1,2,4} 69: {2,9} 92: {1,1,9}
For prime factors instead of indices we have
A069900, complement
A081306.
Partitions of this type are counted by
A237820.
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[100],2*Min@@prix[#]
A240304
Number of partitions of n such that (maximal multiplicity of parts) > (multiplicity of the least part).
Original entry on oeis.org
0, 0, 0, 0, 0, 1, 0, 2, 3, 4, 5, 12, 11, 21, 27, 37, 49, 71, 87, 124, 153, 204, 260, 344, 421, 550, 685, 867, 1076, 1360, 1660, 2081, 2544, 3145, 3831, 4706, 5692, 6958, 8395, 10171, 12224, 14761, 17645, 21204, 25281, 30207, 35914, 42760, 50618, 60057, 70914
Offset: 0
a(7) counts these 2 partitions of 7: 331, 2221.
-
z = 60; f[n_] := f[n] = IntegerPartitions[n]; m[p_] := Max[Map[Length, Split[p]]] (* maximal multiplicity *)
Table[Count[f[n], p_ /; m[p] == Count[p, Min[p]]], {n, 0, z}] (* A240303 *)
Table[Count[f[n], p_ /; m[p] > Count[p, Min[p]]], {n, 0, z}] (* A240304 *)
A364193
Number of integer partitions of n where the least part is the unique mode.
Original entry on oeis.org
0, 1, 2, 2, 4, 4, 7, 9, 13, 17, 24, 32, 43, 58, 75, 97, 130, 167, 212, 274, 346, 438, 556, 695, 865, 1082, 1342, 1655, 2041, 2511, 3067, 3756, 4568, 5548, 6728, 8130, 9799, 11810, 14170, 16980, 20305, 24251, 28876, 34366, 40781, 48342, 57206, 67597, 79703
Offset: 0
The a(1) = 1 through a(8) = 13 partitions:
(1) (2) (3) (4) (5) (6) (7) (8)
(11) (111) (22) (311) (33) (322) (44)
(211) (2111) (222) (511) (422)
(1111) (11111) (411) (3211) (611)
(3111) (4111) (2222)
(21111) (22111) (4211)
(111111) (31111) (5111)
(211111) (32111)
(1111111) (41111)
(221111)
(311111)
(2111111)
(11111111)
For greatest part and multiple modes we have
A171979.
Allowing multiple modes gives
A240303.
For mean instead of least part we have
A363723.
These partitions have ranks
A364160.
Ranking and counting partitions:
-
Table[If[n==0,0,Length[Select[IntegerPartitions[n], Last[Length/@Split[#]]>Max@@Most[Length/@Split[#]]&]]],{n,0,30}]
Comments